Dynamiske Modeller af Termiske Systemer

Størrelse: px
Starte visningen fra side:

Download "Dynamiske Modeller af Termiske Systemer"

Transkript

1 Palle Andersen, Tom. Pedersen og teen Tøffner-Clausen U oktober 1996 Afdeling for Proceskontrol, Institut for Elektroniske ystemer Aalborg Universitet, Fredrik Bajers Vej 7, DK-9220 Aalborg Ø, Danmark

2 ide II af VII Forord Disse noter er skrevet til et grundlæggende kursus i dynamisk modellering af termiske systemer på ystemkonstruktionsliniens 8. semester, Institut for Elektroniske ystemer, Aalborg Universitet, 1996 Formålet med noten er at give en indføring i generelle modelleringsmetoder for termiske systemer. Noten introducerer et generelt modelværktøj Γ-ligningen og det illustreres hvorledes de 3 balanceligninger masse-, energi- og impulsbalancen kan udledes som special cases. Noten behandler balanceligningerne både for systemer med koncentrede og fordelte parametre. I forbindelse med energibalancen lægges speciel vægt på varmetransmissionsligninger herunder især tvungen konvektion. Der gives en kort opfriskning til simulering af ulineære differentialligninger med fordelte parametre, men generelt forudsættes det, at simulering af dynamiske systemer er velken stof. Det gives desuden en kort indføring i to-fase systemer. Denne note er en udvidelse af en tidligere note [AP90]. pecielt er introduktionen af Γ- ligningen kommet til, og der er meaget et kapitel omkring systemer med fordelte parametre. For en grundigere behandling af systemer med fordelte parametre se [PA88]. Nøgleord Modellering, balanceligninger, varmetransmission, koncentrerede og fordelte parametre, differentialligninger, simulering. Forfatternes tilhørsforhold Forfatterne er tilknyttet Afdelingen for Proceskontrol, Institut for Elektroniske ystemer, Aalborg Universitet, DK-9220 Aalborg Ø, Danmark. e afdelingens home-page: Forfatternes addresse er: {pa,tom,stc}@@control.auc.dk

3 ide III af VII Forord til 2. Udgave I denne 2. udgave af noten er der foretaget mindre rettelser og forbedringer, uden at notens form og indhold er ændret på væsentlige punkter. De vigtigste ændringer er sket i udledningen af energibalancen (Afsnit 2.5). Desuden er noten omskrevet i L A TEX2ε i report document class med pakkerne lcaption, epsf, theorem, varioref, eepic og amstex.

4 ide IV af VII Indhold 1 Indledning Formål med model ystemets virkemåde ystemets grænseflade Opdeling i delsystemer Antagelser Kontrolvolumener Afrunding Matematiske Modeller af Fysiske ystemer Tætheder trømme og strømtætheder Den Generelle Balanceligning Γ-Ligningen Massebalancen Energibalancen Impulsbalancen Empiri Varmetransmissionsligninger Ledning tråling Konvektion Friktionsuryk ystemer med Fordelte Parametre Γ-Ligningen på Differentialform Massebalancen på Differentialform Impulsbalancen på Differentialform Energibalancen på Differentialform imulering af systemer med fordelte parametre imulering med fysisk sektionering imulering med karakteristikmetoden Flerfasesystemer Tilstandsrelationer

5 ide V af VII Figurer 1.1 Modstrømsvarmeveksler Kausaldiagram for varmeveksler Processtrukturdiagram for varmeveksler ammenhæng mellem delsystemerne Eksempel på indlæggelse af kontrolvolumener impelt eksempel på massebalance Fladestykke A indlagt i tætpakket partikelsystem Kontrolvolumen indlagt i tætpakket partikelsystem Energibalancen anven på rørudsnit Kræfter af kort rækkevidde opdelt i normal- og tangentialkomposant Temperaturprofil varmeledning Temperaturprofil ledning og konvektion Væskegennemstrømmet rør Darcy friktions faktoren f Rørfriktionen ξ for bøjet rør Krydsvarmeveksler (kraftværksoverheder) Infinitesimalt dampelement Karakteristikker Net af karakteristikker til simulering af krydsvarmeveksler , T fasediagram pecifik entalpi af vand og vanddamp som funktion af tryk og temperatur h, - diagram for vand/vanddamp Rør, hvor indgangsflowet er vanddamp og udgangsflowet er mættet vand

6 ide VI af VII Tabeller 1.1 Klassifikation af variable Eksempler på kræfter af kort og lang rækkeviddes effekt Cirka-værdi for varmeledningstal Variable som forsøg har vist har betydning for α

7 ide VII af VII Nomenklaturliste A Areal, [m 2 ]. C trålingsfaktor, [J/(sK 4 )], [m 2 /(s 3 K 4 )]. c pecifik varmekapacitet, [Joule/(kg C)], [m 2 /(s 2 C)]. D Diameter, [m]. E Energi [Joule], [kg m 2 /s 2 ]. E kin Kinetisk energi [kg m 2 /s 2 ]. E pot Potentiel energi [kg m 2 /s 2 ]. F Kraft, [N], [kgm/s 2 ]. G Bevægelsesmængde/impuls, [kgm/s]. h Enthalpi, [Joule/kg], [m 2 /s 2 ]. i trøm. j trømtæthed. L Længde, [m]. M, m Masse [kg]. ṁ Massestrøm [kg/sek]. n Normalvektor. P Effekt [Joule/sek], [kg m 2 /s 3 ]. Q Tilført varmeeffekt, [Joule/sek], [kg m 2 /s 3 ]. R Radius, [m]. r Retningsvektor. T Temperatur, [ C]. U Indre energi [kg m 2 /s 2 ]. u pecifik indre energi [Joule/kg], [m 2 /s 2 ]. V Volumen [m 3 ]. v Hastighed [m/sek]. W Udført arbejde, [Joule], [kg m 2 /s 2 ]. x, y, z Retvinklede rumkoordinater. Nu Nusselts tal. Re Reynolds tal. Pr Pranls tal. α Varmeovergangstal, [Joule/(sek Cm 2 )], [kg/(s 3 C)]. Γ Γ-mængde. γ Γ-mængde for en partikel. f Tryktabsfaktor ved lige rørstykker. λ Varmeledningsevne, [W/(m C)], [kg m/(s 3 C)]. µ Dynamisk viskositet, [Ns/m 2 ], [kg/(ms)]. ν Kinematisk viskositet, [m 2 /s]. ξ Formfaktor for tryktab gennem formstykker. ρ Tæthed. σ Mekanisk spænding [N/m 2 ], [kg/ms 2 ]. Tryk [Pascal], [kg/(ms 2 ].

8 Kapitel 1 Indledning Formulering af matematiske modeller for fysiske systemer er en essentiel ingeniørdisciplin indenfor såsagt samtlige fagretninger. Ved analyse af processystemer af enhver slags (kemiske, termiske, hydrauliske, elektriske, osv.) er det en forudsætning at processen kan beskrives på en tilgængelig matematisk form, f.eks. ved et sæt af sammenhørende differentialligninger. Derfor er kendskab til generelle modelleringsmetoder et must for enhver god ingeniør. Ved opstilling af en matematisk model for et fysisk system skelnes mellem 2 principielt forskellige metoder; enten kan modellen findes som en black box model baseret på en analyse af observationer foretaget på det fysiske system eller modellen kan bestemmes som en fysisk model baseret på en systematisk anvendelse af fysiske grundlove. Black box modeller er normalt simple lineære modeller, hvis fordel er, at de hurtigt kan opstilles. En vigtig disciplin indenfor black box modellering er systemidentifikation, hvor parametre i en parametrisk (lineær) model bestemmes udfra målinger således at kvadratfejlen mellem målt og predikteret output minimeres. Black box modellerne har imidlertid 2 væsentlige begrænsninger: Den fysiske forståelse af systemet mangler. Manglende strukturel overensstemmelse mellem det fysiske system og modellen, f.eks. ved ulineære systemer. De fysiske modeller er normalt et sæt af sammenhørende muligvis partielle og ulineære differentialligninger. Ulempen ved sådanne modeller er, at det som oftest er ret tidskrævende at opstille dem. Ofte er man desuden interesseret i en lineær beskrivelse af systemet, f.eks. til lineært regulatordesign, hvilket betyder at de ulineære differentialligninger må lineariseres omkring et arbejdspunkt. Fordelen ved en fysisk model er, at man opnår en fysisk forståelse for systemet, som senere, f.eks. ved regulatordesign, vil være nyttig. Desuden vil der være en strukturel overensstemmelse mellem det fysiske system og den opstillede (evt. lineariserede) model. Hvis modellen skal anvendes i forbindelse med regulering, vil den lineariserede model vise hvilke fysiske størrelser, der er betydende for tidskonstanter, forstærkninger og tidsforsinkelser, samt hvorledes disse ændres i forskellige driftssituationer (arbejdspunkter). Denne note vil omhandle opstilling af modeller baseret på fysiske love. Ved opstilling af sådanne modeller er det ønskeligt at have en generel procedure, som kan følges hver gang. For termiske systemer vil følgende fremgangsmetode kunne anvendes: 1

9 ide 2 af Formålet med modellen specificeres. F.eks. til regulatordesign/simulering. 2. ystemet virkemåde beskrives, f.eks grafisk. 3. ystemets grænseflader defineres, dvs. input og output fastlægges. 4. ystemet opdeles i undersystemer, hvor hvert delsystems grænseflade defineres. 5. Foreløbige antagelser specificeres. De foreløbige antagelser revideres evt. under pkt I hvert delsystem indlægges der kontrolvoluminer. 7. For hvert kontrolvolumen anvendes de fysiske love systematisk. 8. Parameterværdierne bestemmes. 9. De enkelte delmodeller evalueres. 10. Den samlede model evalueres/verificeres. 1.1 Formål med model. Ved opstilling af en model for et fysisk system er det vigtigt at definere formålet med modellen. For et fysisk system kan der opstilles mange forskellige modeller, som alle kan være rigtige, men sigter på forskellige anvendelser. om et eksempel kan nævnes en varmeveksler. Anvendes denne i et stort system, og ønskes der en dynamisk model af det samlede system til regulatordesign, indgår varmeveksleren måske som en konstant i de samlede model. Er det derimod en konstruktør, der modellerer varmeveksleren, er han måske interesseret i temperaturen på et givet sted til en given tid med givne begyndelsesbetingelser og vil derfor anvende en matematisk model med ulineære instationære partielle differentialligninger. Begge modeller kan være rigtige for de givne anvendelser. Dermed være sagt, at det er svært at vurdere om en model er rigtig, men man kan vurdere, om den kan anvendes til det konkrete formål. Modellerne der opstilles i denne note vil kunne anvendes til opstilling af kontrolkoncepter og simulering. De modeller der er egnede til opstilling af kontrolkoncepter, er dem der gengiver systemernes væsentlige dynamiske og ulineære forhold f.eks baseret på en koncentreret parameterbeskrivelse. Alle de opstillede modeller kan anvendes til simulering. 1.2 ystemets virkemåde En omhyggelig og grundig beskrivelse af systemets komponenter samt dets virkemåde er nødvendig før den matematiske modellering kan påbegyndes. I de allerfleste tilfælde vil det være således, at selve den matematiske model ikke giver nogen yderlig kvalitativ information, dvs. at den matematiske model kun afspejler systembeskrivelsen. Udover selve systembeskrivelsen kan et kausaldiagram eller et processtrukturdiagram være til hjælp. Et kausaldiagram er en afbildning af et system som afspejler de kvalitative sammenhænge mellem et systems tilstande, input og output. om et eksempel anvendes modstrømsvarmeveksleren vist på Figur 1.1.

10 ide 3 af 47 Varmeveksler T1ind m1 T2ud m2 T1ud m1 T2ind m2 Figur 1.1: Modstrømsvarmeveksler. For modstrømsvarmeveksleren er man interesseret i sammenhængen mellem de på figuren viste stationære st ørrelser. Denne sammenhæng er vist på kausaldiagrammet Figur 1.2. Her antages det, at en af de seks tilstande får en positiv tilvækst. Hvilke tilstande denne tilvækst påvirker er indikeret med pilene, og fortegnet på pilen angiver i hvilken retning disse tilstande vil blive påvirket. Eksempelvis kan T 1,ind gives en positiv tilvækst, dette medfører at T 1,ud og T 2,ud begge påvirkes i positiv retning, hvilket fremgår af fortegnene på pilene. Kausaldiagrammet er, som det vil kunne ses ved en analyse af varmeveksleren, afhængig af den aktuelle driftsituation. Det viste diagram forudsætter således, at T 1,ind er større end T 2,ind. T1ind + + T1ud + + m1 + - T2ind + T2ud - m2 Figur 1.2: Kausaldiagram for varmeveksler. Et procestrukturdiagram er en grafisk afbildning baseret på blokdiagrammer, hvor blokkene viser grafisk hvorledes variablen på udgangen opfører sig ved stepinput på indgangen. En blok kan også indeholde en statisk ulinearitet. De typiske dynamiske responsetyper i blokkene er f.eks: Første ordens repons. Tidsforsinket første ordens repons. Højere ordens respons. Integralrespons. Ren tidsforsinkelse. Ustabilitet.

11 ide 4 af 47 Diagrammet afspejler hvorledes man før selve modelleringen (dvs. opstilling af modelligninger) antager hvor processens dynamik findes. For varmeveksleren er et forslag til processtrukturdiagram vist på Figur 1.3 (T 2,ind regnes for konstant). Det bemærkes, at man ved opstilling af et processtrukturdiagram ikke tager stilling til kvantitative størrelser (f.eks. tidskonstanter og forstærkninger), som man gør i et normalt blokdiagram. m2 T1ind T1ud T2ud m1 Figur 1.3: Processtrukturdiagram for varmeveksler. 1.3 ystemets grænseflade ystemet der skal modelleres skal afgrænses, således at input og output defineres. Denne afgrænsning samt definition af input/output kan tit volde problemer, når der er tale om termiske systemer, for eksempel vælges flow ud af systemet ofte som input. om et eksempel kan tages en væsketank med et tilløb og et afløb. Tanken ønskes modelleret således at væskehøjden er output (skal måske reguleres). om modelinput vil man vælge masseflowet ud af tanken og masseflowet ind i tanken, hvilket vil gøre modellen uafhængig af, hvad der eventuelt er placeret i og efter afløbet. For at undgå forvirring omkring den terminologi, der anvendes i forbindelse med modellering (f.eks. ordene input og output), er der på Tabel 1.1 en oversigt over hvilke termer, der anvendes af procesingeniører (kemi/maskin), systemingeniører og matematikere.

12 ide 5 af 47 Procesingeniør ystemingeniør Matematiker forstyrrelse input fri,uafhængig variabel belastning input fri,uafhængig variabel manipulator input fri, uafhængig variabel response output afhængig variabel parameter parameter parameter tilstand tilstand afhængig variabel extensiv volumen relateret variabel intensiv punkt relateret variabel 1.4 Opdeling i delsystemer Tabel 1.1: Klassifikation af variable. Det er oftest en fordel at opdele systemet i en række delsystemer, hvor hver enkelt delsystem svarer til en fysisk komponent. For delsystemerne skal grænsefladen (input,output) defineres. ammenhængen mellem delsystemerne kan opdeles i 5 strukturer, nemlig eriel struktur Feedforward (parallel) struktur Feedback struktur Medstrømsstruktur Modstrømsstruktur De 5 strukturtyper er skitseret på Figur 1.4. trukturen kan have betydning hvis der ønskes en simulering af det samlede system. 1.5 Antagelser Før den matematiske modellering påbegyndes er det nødvendigt at lave en række antagelser. Der kan naturligvis ikke opstilles generelle antagelser, men hyppigt anvene antagelser for termiske systemer er følgende Parallelt forbundne rør regnes for ens. Enhver egenskab er i et rørtværsnit givet ved en værdi. For eksempel kan det antages, at væsketemperaturen i et væskegennemstrømmet rør er den samme over et givet tværsnit. Væsker er inkompressible. Mætningstilstande antages ofte, selv om dette ikke helt er opfyl. For væsker antages energiindholdet kun at være afhængigt af temperaturen. Friktionsfaktorer er konstante.

13 ide 6 af 47 eriel Parallel Feedback Medstrøm Modstrøm 1.6 Kontrolvolumener Figur 1.4: ammenhæng mellem delsystemerne. Ud over de nævnte antagelser sker der ved modellering med koncentrerede parametre en antagelse ved indlægning af kontrolvolumener. I denne metode indlægges der i hvert delsystem et antal sammenhængende kontrolvolumener. Et kontrolvolumen vælges således, at alle variable kan tilnærmes som værende ens overalt i volumenet (ens i sted, men ikke i tid). om et eksempel på indlæggelse af kontrolvolumener er på Figur 1.5 vist et væskegennemstrømmet rør. Kontrolvolumen 2 Kontrolvolumen 1 Kontrolvolumen 2 Figur 1.5: Eksempel på indlæggelse af kontrolvolumener. Væskegennemstrømmet rør. På figuren er der indlagt to sammenhængende kontrolvolumener. I det ene volumen, som omfatter væsken, regnes med at temperaturen, massefylden og trykket er ens overalt. Det andet kontrolvolumen er indlagt omkring rørvæggen, her regnes der ligeledes med ens egenskaber, hvilket eksempelvis vil sige ens temperatur. Det vil gælde at flere kontrolvolumener vil give en nøjagtigere model (uendeligt mange giver en model beskrevet med partielle differentialligninger), men denne forøgelse af modelordenen vil ikke nødvendigvis være at foretrække, hvis modellen skal anvendes til regulatordesign.

14 ide 7 af Afrunding I denne indledning er der introduceret en procedure, der kan anvendes, når der skal opstilles en model af et termisk system. De punkter, der ikke vedrører selve matematikken er kort gennemgået.

15 Kapitel 2 Matematiske Modeller af Fysiske ystemer Ved at anvende de styrende fysiske love for det specielle system man ønsker at modellere, kan man som før nævnt opstille en matematisk beskrivelse af systemet, typisk som et sæt af sammenhørende differentialligninger. Disse differentialligninger kan være enten ordinære eller partielle, alt efter om der regnes med koncentrede eller fordelte parametre i modellen. De anvene fysiske love er selvfølgelig helt afhængige af det undersøgte system. For et elektrisk system kan det være Ohms lov eller Maxwell s feltligninger og for et kemisk system kan det f.eks. være reaktionsligninger. I denne note vil modelleringen af termiske systemer blive omhandlet. Hertil anvendes flg. 2 generelle typer af ligninger: Balanceligninger. Empiriske relationer. I det følgende vil der blive opstillet en generel model for vekselvirkende tætpakkede partikelsystemer. Først analyseres dog et simpelt eksempel. Eksempel 2.1 (Massebalance) Betragt det på Figur 2.1 viste cylindriske vandkar med 2 tilløb og 1 afløb. ṁ 1 (t) ṁ 2 (t) h(t) M (t) ṁ 3 (t) Figur 2.1: impelt eksempel på massebalance. Vandkar med 2 tilløb og et afløb. Karrets diameter er D og vandhøjden til et givet tidspunkt er h(t). Vandets massefylde ρ M 8

16 ide 9 af 47 regnes konstant. Da masse hverken kan opstå eller forsvinde vil der således gælde at: hvor M (t) er vandmassen i karret. dm (t) = ṁ 1 (t) + ṁ 2 (t) ṁ 3 (t) (2.1) ρ M πd 2 dh(t) = ṁ(t) (2.2) 4 4 t h(t) = ρ M πd 2 ṁ(t) + h(t 0 ) (2.3) t 0

17 ide 10 af 47 Verbalt kan argumentationen anven i Eksempel 2.1 beskrives som: Den samlede masse i kontrolvolumenet (vandkarret) er lig med massetætheden ρ M multipliceret med volumenet 0.25πD 2 h(t). Ændringen af masse i kontrolvolumenet er lig med summen af massestrømme ud og ind i. I de næste 2 afsnit generaliseres størrelserne massetæthed og massestrøm for at kunne opstille generelle betragtninger for tætpakkede partikelsystemer. 2.1 Tætheder Givet et tætpakket partikelsystem, hvor der indlægges en lille terning med rumfanget V, betragt en egenskab ved dette partikelsystem. Det kunne f.eks. være masse eller energi. Denne egenskab kaldes for Γ. Da egenskaben kan være retningsafhængig, er Γ en vektor. Det antages nu, at terningen V består af et meget stort antal partikler, der alle har samme masse m 1. Γ-mængden, positionen og hastigheden af den k te partikel kaldes henholdsvis γ k, r k og v k. Den samlede Γ-mængde i V til tiden t findes da som summen af γ k for alle partikler i V : Γ(t) = k γ k (t), r k (t) V (2.4) Vi lader nu V 0. Hvis størrelsen Γ V konvergerer mod en grænseværdi, vil denne blive betegnet Γ-tætheden i punktet med stedvektoren r til tiden t med notationen ρ Γ ( r,t): ρ Γ ( r,t) = lim Γ(t) V 0 V = lim k γ k(t), r k (t) V (2.5) V 0 V Det antages, at partikelsystemet forbliver tætpakket for V 0. agt med andre ord går V mod 0 makroskopisk. Et partikelsystem kan nu tilskrives forskellige tætheder, idet Γ kan erstattes med f.eks. masse eller energi. Massetætheden eller massefylden ρ M kan findes som: ρ M ( r,t) = lim V 0 = lim V 0 Γ(t) (2.6) V Γ=M k m k V, r k(t) V (2.7) M(t) = lim (2.8) V 0 V = ρ M ( r,t) (2.9) Da massen m k = m er uafhængig af hastigheden v k er massefylden ρ M ikke en vektor, hvilket er i overensstemmelse med den gængse definition. Bevægelsesmængdetætheden ρ G findes efter 1 Generelt kan partiklerne i V opdeles i et endeligt antal grupper med forskellig masse m i, men dette besværliggør udledningen en del og gør notationen unødvendig indviklet. Interesserede læsere kan konsultere [øl82].

18 ide 11 af 47 samme opskrift: ρ G ( r,t) = lim Γ(t) (2.10) V 0 V Γ= G k = lim k v k (t), r k (t) V (2.11) V 0 V m k = lim k(t), r k (t) V (2.12) V 0 V mn(t) v(t) = lim V 0 V (2.13) M(t) v(t) = lim V 0 V (2.14) = ρ M ( r,t) v( r,t) (2.15) hvor N er det totale antal partikler i V og v = 1 N partikler i V. k v k er middelhastigheden af samtlige 2.2 trømme og strømtætheder Betragt atter et tætpakket partikelsystem. Nu indlægges istedet et lille tænkt fladestykke med arealet A, se Figur 2.2. Γ-strømmen defineret som den passerede Γ-mængde pr. tidsenhed gennem A vil nu blive fundet. n A v t Figur 2.2: Fladestykke A indlagt i tætpakket partikelsystem. Partikler med hastigheden v vil passere gennem A, hvis de befinder sig i et parallelepipedum med endefladen A og kantlængde v t. Hvis partikler med hastigheden v(t) skal bidrage til Γ-strømmen gennem A i tiden t til t + t, hvor t er en infinitesimal tidstilvækst, må de befinde sig i det på Figur 2.2 viste parallelepipedum af fladen A og længden v(t) t. Volumenet af dette parallelepipedum er: V v (t) = v(t) n A t (2.16) hvor ( ) er skalarproduktet (det indre produkt) og n er den udafrettede enhedsnormal. Det antages nu, at samtlige partikler i V har samme hastighed, nemlig middelhastigheden v = 1 N k v k. Der ses med andre ord bort fra den Γ-strøm, der skyldes individuel partikelbevægelse 2. Γ-mængden indenfor V v findes ved multiplikation med middeltætheden ρ Γ ( r,t) 2 Denne antagelse kan udelades, se [øl82, øl84], men det komplicerer beregningen af strømtætheden og som oftest kan man ved termiske systemer se bort fra strømbidraget fra den individuelle partikelbevægelse.

19 ide 12 af 47 over V v. Γ-strømmen gennem A findes da som: ρ Γ ( r,t) V v (t) i Γ (t) = lim t 0 t (2.17) = ρ ( r,t)( v(t) n) A Γ (2.18) hvor r er stedvektoren til fladen A og ρ Γ ( r,t) er middeltætheden over A. Γ-strømmen gennem en flade kan nu findes ved at beregne fladeintegralet: i Γ (t) = ρ Γ ( r,t)( v( r,t) n) da (2.19) = j Γ ( r,t) nda (2.20) hvor r er stedvektoren til det infinitesimale fladestykke da og det dyadiske (ydre) produkt j Γ er strømningstætheden: ρ Γ,x v x ρ Γ,x v y ρ Γ,x v z j Γ ( r,t) = ρ Γ,y v x ρ Γ,y v y ρ Γ,y v z (2.21) ρ Γ,z v x ρ Γ,z v y ρ Γ,z v z = ρ Γ ( r,t) v( r,t) (2.22) hvor ( ) i henviser til den i te komponent. Bemærk at strømtætheden generelt er en 3 3 matrix. Den kinetiske energistrømtæthed j Ekin er f.eks. givet ved: j Ekin ( r,t) = ρ Ekin ( r,t) v( r,t) (2.23) ( k = lim 0.5m k v k (t) 2 ) v( r,t) (2.24) V 0 V = 1 2 lim m k v k(t) 2 v( r,t) (2.25) V 0 V = 1 2 ρ M( r,t)v 2 ( r,t) v( r,t) (2.26) hvor middelkvadrathastigheden v 2 ( r,t) (som er en skalar) er givet ved: v 2 ( r,t) = 1 v k (t) 2 (2.27) N Bemærk at middelkvadrathastigheden v 2 ( r,t) ikke umiddelbart er lig med kvadratet på middelhastigheden v( r,t), idet: k v 2 ( r,t) = 1 v k v N k = v( r,t) 2 (2.28) N k Den kinetiske energistrømtæthed er en vektor, da ρ Ekin er en skalar. Bemærk, at der i beregningen af den kinetiske energi er meaget både den ordnede (makroskopiske) og uordnede k

20 ide 13 af 47 (mikroskopiske) partikelbevægelse. Den uordnede kinetiske energi kaldes også termisk eller indre energi. For en-fase systemer er den med god tilnærmelse lineært afhængig af temperaturen. Bevægelsesmængdestrømtætheden jg er givet ved: j G ( r,t) = ρ G ( r,t) v( r,t) (2.29) = ρ M ( r,t) v( r,t) v( r,t) (2.30) jævnfør Ligning (2.15). Bemærk at j G er en matrix. 2.3 Den Generelle Balanceligning Γ-Ligningen En generel model for et vekselvirkende tætpakket partikelsystem vil nu blive opstillet udfra de definerede begreber tæthed ρ, strøm i og strømtæthed j. De styrende naturlove, der anvendes ved modellering af termiske systemer er de 3 balanceligninger masse-, impuls- og energibalancen. Disse love gælder i deres oprindelige form for et fast partikelsystem, dvs. en givne lukket stofmængde. Ofte har man imidlertid behov for at opstille ligningerne for et fast kontrolvolumen. Der opstår derfor et behov for at urykke de for et partikelsystem gældende naturlove ved hjælp af størrelser, der gælder for et fast kontrolvolumen. Dette vil nu blive gjort for den generelle egenskab Γ. Der indlægges en tænkt fast lukket flade i det tætpakkede partikelsystem. Området indenfor benævnes, og udgør det analyserede kontrolvolumen, se Figur Partikler, der til tiden t befinder sig indenfor defineres som systempartikler. Det faste partikelsystem består altså af de partikler, der til det specifikke tidspunkt t befinder sig i kontrolvolumenet. Vi vil nu finde den afledede af Γ-mængden af partikelsystemet urykt ved Γ-mængden i kontrolvolumenet. For at understrege sondringen mellem Γ-mængden i partikelsystemet og kontrolvolumenet vil Γ-mængden for partikelsystemet betegnes Γ p. Hvorledes vil Γ-mængden for partikelsystemet ændre sig i tiden t til t + t, hvor t er en infinitesimal tidstilvækst? Til tiden t er Γ-mængden for partikelsystemet givet ved: Γp (t) = ρ Γ ( r,t)dv (2.31) Til tiden t + t er Γ-mængden af partikelsystemet ændret. Nogle af systempartiklerne er nu ikke længere i, men i + (se Figur 2.3), og der er partikler i, nemlig i, der ikke hører til det faste partikelsystem. Γ-mængden til tiden t + t kan findes som: Γp (t + t) = ρ Γ ( r,t + t)dv + ρ Γ ( r,t + t)dv ρ Γ ( r,t + t)dv (2.32) + hvor første led på højresiden er Γ-mængden af partikler, der befinder sig i det være sig både systempartikler og omgivelsespartikler til tiden t+ t, andet led er Γ-mængden i + (systempartikler) og sidste led er Γ-mængden i (omgivelsespartikler). Det infinitesimale volumenelement dv kan omskrives til: dv = v n tda (2.33) 3 For bedre at kunne anskueliggøre problemet er det valgt at illustrere et kasseformet kontrolvolumen, hvor hastighedsvektoren v(t) for partiklerne står vinkelret på kassens endeflade. Betragtningerne gælder selvsagt for et vilkårligt kontrolvolumen samt en vilkårlig hastighedsvektor.

21 ide 14 af 47 + v(t) + Figur 2.3: Kontrolvolumen indlagt i tætpakket partikelsystem. Partikelsystem defineres som de partikler, ser til tiden t befinder sig i. Til tiden t + t har partikelsystemet bevæget sig delvis ud af. De to endeflader, hvor partiklerne bevæger sig ind henholdsvis ud af benævnes henholdsvis og +. hvor n er den udadrettede normalvektor til fladestykket da. Ligning (2.32) kan da omskrives til: Γp (t + t) = ρ Γ ( r,t + t)dv + ρ Γ ( r,t + t) v( r,t + t) n tda + ρ Γ ( r,t + t) v( r,t + t) ( n) tda (2.34) hvor og + er den del af fladen, der danner grænseflade for henholdvis og +, se Figur 2.3. Ved addition af de to sidste led på højresiden af Ligning (2.34) fås: Γp (t + t) = ρ Γ ( r,t + t)dv + ρ Γ ( r,t + t) v( r,t + t) n tda (2.35) Γp (t + t) = ρ Γ ( r,t + t)dv + t j Γ ( r,t + t) nda (2.36) Γ-tilvæksten pr tid er da: d Γ p (t) = lim Γ p (t) t 0 t Γp (t + t) = lim Γ p (t) t 0 t = lim ρ Γ ( r,t + t)dv ρ Γ ( r,t)dv t 0 t ρ Γ ( r,t) = t = ρ t Γ ( r,t)dv + (2.37) (2.38) + j Γ ( r,t) nda (2.39) dv + j Γ ( r,t) nda (2.40) j Γ ( r,t) nda (2.41)

22 ide 15 af 47 = d ρ Γ ( r,t)dv + j Γ ( r,t) nda (2.42) = d Γ (t) + i Γ (t) (2.43) da er fast. Γ er Γ-mængden i kontrolvolumenet og i Γ (t) er den samlede Γ-strøm ud af. Ligning (2.43) er en generel kinematisk relation for tætpakkede partikelsystemer. Venstresiden er den tidsafledede af Γ-mængden af vores partikelsystem nemlig det kvantum partikler, der befan sig i til tiden t og højresiden beskriver denne ændring i forhold til kontrolvolumenet. I de flg. afsnit vil Γ-ligningen på formen (2.42) blive brugt på masse-, impuls- og energibevarelsessætningen. 2.4 Massebalancen Massebalancen i den klassiske fysik postulerer, at massen af et lukket system er konstant: dm(t) = 0 (2.44) Indsat i Γ-ligningen (2.42) giver dette: dm(t) = d ρ M ( r,t)dv + j M ( r,t) nda = 0 (2.45) dm (t) = ρ M ( r,t) v( r,t) nda (2.46) dm (t) = i M (t) = ṁ(t) (2.47) hvilket er identisk med Ligning (2.1), der blev anven på vandkareksemplet. 2.5 Energibalancen Energibalancen postulerer, at ændringen i kinetisk energi er lig med de resulterende kræfters effekt, som vi deler op i ydre (uden for ) og indre resulterende kræfters effekt: de kin (t) = Pres ydre indre (t) + Pres (t) (2.48) De indre kræfter er potentialkræfter, hvorfor deres effekt kan skrives som: P indre res (t) = deindre pot (t) (2.49) Ligning (2.48) kan således omskrives til: de kin (t) + deindre pot (t) = Pres ydre (t) (2.50)

23 ide 16 af 47 Almindeligvis opdeles den kinetiske energi i bidrag fra den kollektive (makroskopiske) partikelbevægelse og fra den individuelle (mikroskopiske) partikelbevægelse: E kin (t) = Ekin M (t) + Eµ kin (t) (2.51) hvor Ekin M (t) og Eµ kin (t) er det hhv. makroskopiske og mikroskopiske bidrag. De ydre resulterende kræfters effekt kan opdeles efter kræfter med kort eller lang rækkevidde og ligeledes i en makroskopisk hhv. mikroskopisk del: P ydre res ydre,m ydre,µ (t) = Pres,kort (t) + Pres,kort Eksempler på de forskellige led er givet i Tabel 2.1. (t) + P ydre,m res,lang ydre,µ (t) + Pres,lang (t) (2.52) P ydre,m res,kort Tryk- og gnidningskræfters effekt. P ydre,µ res,kort Effekt ved varmeledning. P ydre,m res,lang Potentialkræfters effekt, f.eks. tyngdekraftens effekt P ydre,µ res,lang Effekt ved varmestråling. Tabel 2.1: Eksempler på kræfter af kort og lang rækkeviddes effekt. Opdelt i mikroskopisk og makroskopiske del. Energibalancen (2.50) kan da formuleres på formen: de M kin (t) + deµ kin (t) + deindre pot (t) = P ydre,m ydre,µ res,kort (t) + Pres,kort (t) + P ydre,m res,lang (t) + P ydre,µ res,lang (t) (2.53) ummen af den indre potentielle energi Epot indre (t) og den mikroskopiske kinetiske energi E µ kin (t) kaldes den indre energi, som normalt benævnes U(t). Ved substitution med U(t) samt indsættelse af venstresiden af (2.53) i gammaligningen (2.42) fås da: de M kin (t) + du(t) = d ( ) ( ) ρ E M ( r,t) + ρ U ( r,t) dv + j kin E M ( r,t) + j U ( r,t) nda (2.54) kin

24 ide 17 af 47 De enkelte led beregnes: ρ E M kin ( r,t) = lim V 0 ρ U ( r,t) = lim V 0 k 0.5m k v M k (t) 2 V k m ku k (t) V = 1 2 ρ M( r,t)v 2 M( r,t) (2.55) = ρ M ( r,t)u( r,t) (2.56) j E M ( r,t) = ρ kin E M ( r,t) v( r,t) = 1 kin 2 ρ M( r,t)v M 2 ( r,t) v( r,t) (2.57) j U ( r,t) = ρ U ( r,t) v( r,t) = ρ M ( r,t)u( r,t) v( r,t) (2.58) hvor u( r,t) er den specifikke indre energi, dvs. indre energi per masseenhed. Den makroskopiske middelkvadrathastighed vm 2 kan omformuleres til: vm = v k,m = v N k = v 2 (2.59) N Den kinetiske energitæthed og -strømtæthed kan derfor omskrives til: k k ρ E M kin ( r,t) = 1 2 ρ M( r,t) v( r,t) 2 (2.60) j E M kin ( r,t) = 1 2 ρ M( r,t) v( r,t) 2 v( r,t) (2.61) Ligning (2.54) kan nu reformuleres som: dekin M (t) + du(t) = d ( 0.5ρM ( r,t) v( r,t) 2 + u( r,t)ρ M ( r,t) ) dv ( ) ρ M( r,t) v( r,t) 2 v( r,t) + u( r,t)ρ M ( r,t) v( r,t) nda (2.62) Energiligningen på Γ-form bliver da: ( ) d ( 0.5ρM v 2 ) 1 + uρ M dv + 2 ρ M v 2 v + uρ M v nda = Pres ydre (t) = P ydre,m ydre,µ ydre,m ydre,µ res,kort (t) + Pres,kort (t) + Pres,lang (t) + Pres,lang (t) (2.63) idet ( r,t) er udela for overskuelighedens skyld. Eksempel 2.2 (Energibalancen) Energibalancen (2.63) vil nu blive anven på det i Figur 2.4 illustrerede rør med fast tværsnit A og fast overflade temperatur T r. Gennem røret strømmer en inkompressibel væske med massefylde ρ M, indløbstemperatur T i, udløbstemperatur T u, massestrøm ṁ samt fla hastighedsprofil. Ergo har samtlige partikler i rørstykket samme makroskopiske hastighed v = ṁ/(aρ M ). For rørstykket fås derfor: ( ( ) ) 2 ( ( ) ( ) ( )) 2 d ṁ 1 ṁ ṁ ṁ 0.5ρ M + uρ M dv + Aρ M 2 ρm + uρ M nda = Aρ M Aρ M Aρ M P tryk + P frik + P varme (2.64)

25 ide 18 af 47 L m i m u Figur 2.4: Energibalancen anven på rørudsnit. Røret tænkes fasthol ved temperatur T r =konstant. Gennem røret flyder en væske med konstant massefylde ρ M. Der antages fla hastighedsprofil. A hvor P tryk er trykkræfternes effekt og P frik er friktionskræfternes effekt (kræfter af kort rækkevidde, makroskopisk effekt) P varme er den tilførte effekt ved varmeledning (kræfter af kort rækkevidde, mikroskopisk effekt). Det antages, at ingen kræfter af lang rækkevidde afsætter effekt i væsken, specielt at tyngdekraften ikke afsætter effekt, da rørstykket er vandret. Trykkræfternes effekt analyseres udfra den generelle effektligning: P = F v (2.65) hvor F er kraften. Da trykkræfterne på røroverfladen står vinkelret på hastigheden v afsættes her ingen effekt fra trykkræfterne. Ved endefladerne er F og v parallelle, hvorfor effekten her bliver: ( ) ṁ P tryk = ( A n) (2.66) Aρ M hvor er trykket. Gnidningskræfterne afsætter kun effekt langs rørvæggen. Da hastigheden er konstant over rørstykket og modsat rettet friktionen fås: ( ) P frik = F ṁ frik v = F frik (2.67) Aρ M Ligning (2.64) kan da omskrives til: 1 dṁ 2 (t) d dv + ρ 2A 2 M ρ M Lṁ(t) dṁ(t) du(t) + LAρ M Aρ M u(t)dv + 1 ( ) 3 ( ṁ(t) ṁ(t) 2 ρm( A + A) u i(t)ρ MA Aρ M Aρ M ( ) ( ṁ(t) ṁ(t) u u(t)ρ MA = ( i(t) u(t))a Aρ M Aρ M ) + ) F frik (t)v(t) + P varme(t) (2.68) ( = ṁ(t) u i(t) + i(t) u u(t) u(t) ) F frik (t)v(t) + P varme(t) (2.69) ρ M ρ M hvor du(t)/ er den afledede af middelværdien af den indre energi over rørstykket. Ved varmeledning gælder som oftest at: LAρ M du(t) Lṁ(t) dṁ(t) Aρ M (2.70) hvorfor der kan ses bort fra første led på venstresiden af (2.69). Ligeledes antages friktionskræfterne som oftest at være negligeable. Ved indførelse af entalpien h = u + /ρ M kan energiligningen for rørstykket reduceres til: LAρ M dh(t) = LA d (t) + ṁ(t)(h i (t) h u (t)) + P varme (t) (2.71)

26 ide 19 af 47 For en-fase systemer er h c p T, hvor c p er den specifikke varmekapacitet og T er temperaturen. Desuden gælder som oftest at ρ M dh/ d /, hvorfor der ses bort fra den trykafledede. (2.71) reducerer da til: LAρ M c p dt(t) = ṁ(t)c p (T i (t) T u (t)) + P varme (t) (2.72) hvor T er gennemsnitstemperaturen over rørstykket. Mere eksplicitte uryk for den tilførte varmeeffekt vil blive præsenteret i Kapitel Impulsbalancen Impulsbalancen postulerer, at bevægelsesmængdeændringen pr. tidsenhed er lig med summen af de ydre kræfter: d G(t) Hvis venstresiden indsættes i Γ-ligningen (2.42) fås: d G(t) = d = d = F ydre res (t) (2.73) ρ G ( r,t)dv + j G ( r,t) nda (2.74) ρ M ( r,t) v( r,t)dv + ( ρ M ( r,t) v( r,t) v( r,t)) nda (2.75) De ydre resulterende kræfter deles op i kræfter af kort og af lang rækkevidde. Kræfter af kort rækkevidde virker fra de partikler, der ligger tæt udenfor, på de partikler, der afgrænser. Eksempler på kræfter af kort rækkevidde er tryk- og gnidningskræfter. Kræfter af kort rækkevidde rækker kun få atomlængder. Kræfter af lang rækkevidde påvirker ikke kun systempartiklerne i grænsefladen, men alle partikler i. Typiske kræfter af lang rækkevidde er potentialkræfter, f.eks. tyngdekraften. F kort F kort,norm F kort,tang A Figur 2.5: Kræfter af kort rækkevidde opdelt i normal- og tangentialkomposant. Først analyseres kræfter af kort rækkevidde. Betragt Figur 2.5, hvor kraften F ydre kort påvirker fladestykket A på den lukkede flade. Kræfter af kort rækkevidde er proportionale med det fladestykke, hvorpå de virker: F ydre kort (t) = σ(t) A (2.76)

27 ide 20 af 47 Proportionalitetsfaktoren σ kaldes den mekaniske spænding. F ydre kort deles nu op i en tangential- og en normalkomposant, se Figur 2.5. Tilsvarende deles σ op i to komposanter: σ(t) = σ norm (t) + σ tang (t) (2.77) Normalkomposanten af σ er lig med trykket multipliceret med den udadrettede normalvektor n med modsat fortegn. Ergo fås: σ(t) = (t) n + σ tang (t) (2.78) De resulterende kræfter af kort rækkevidde kan da findes ved at integrere over den lukkede flade : F ydre res,kort (t) = ( r, t) nda + σ tang ( r,t)da (2.79) De ydre resulterende kræfter af lang rækkevidde kan skrives som: F ydre res,lang (t) = ρ F ( r,t)dv (2.80) hvor ρ F ( r,t) er krafttætheden i punktet med stedvektoren r til tiden t. For tyngdekraften F T = m g fås f.eks.: idet det forudsættes at g er konstant. ρ FT ( r,t) = lim V 0 = lim V 0 De ydre resulterende kræfter er nu givet ved: F ydre res (t) = F ydre res,kort (t) + F ydre = ( r, t) nda + Γ(t) (2.81) V Γ= FT k m k g (2.82) V g M(t) = lim (2.83) V 0 V = ρ M ( r,t) g (2.84) res,lang og impulsbalancen (2.73) på Γ-form bliver da: d ρ M vdv + (ρ M v v) nda = hvor ( r,t) er udela for overskueligheds skyld. (t) (2.85) σ tang ( r,t)da + ρ F ( r,t)dv (2.86) nda + σ tang da + ρ F dv (2.87) Eksempel 2.3 (Impulsbalancen) Impulsbalancen for det i Eksempel 2 introducerede rørstykke, se Figur 2.4, vil nu blive udle. Der indlægges et retvinklet koordinatssystem i røret med x-akse parallelt med røret, y-akse horisontalt og z-akse vertikalt vinkelret på røret.

28 ide 21 af 47 De samme antagelser vedrørende inkompressibilitet og hastighedsprofil gøres og impulsbalancen (2.87) udskrives efter koordinater: d ρ M ṁ(t) ρ M A 0 0 dv + L dṁ(t) ρ M = ṁ(t) ρ M A 0 0 [ ṁ(t) ρ M A 0 0 (t) nda + ( i(t) u(t))a F tryk,res,y (t) F tryk,res,z (t) + ] nda = σ frik (t) 0 0 F frik (t) 0 0 da + + ρ M 0 0 g 0 0 ρ MgAL dv (2.88) (2.89) hvor F tryk,res,y og F tryk,res,z er de resulterende kræfter i henholdsvis y og x-aksens retning. Vi har således ligningsættet: L dṁ(t) = ( i (t) u (t))a F frik (t) (2.90) F tryk,res,y (t) = 0 (2.91) F tryk,res,z (t) = ρ M gal (2.92) Hvis man multiplicerer begge sider af ligning (2.90) med hastigheden v = ṁ/(ρ M A) fås: Lṁ(t) dṁ(t) = ( i (t) u ρ M A (t))ṁ(t) F frik (t)v(t) (2.93) ρ M Ovenstående uryk indgår i energiligningen for rørstykket på formen (2.69). Ved kombination af de to uryk opnås: ( du(t) LAρ M = ṁ(t) u i(t) + i(t) u u(t) u(t) ) ( i(t) u(t))ṁ(t) + P varme(t) (2.94) ρ M ρ M ρ M LAρ Mc p dt(t) = ṁ(t)c p (T i(t) T u(t)) ( i(t) u(t))ṁ(t) ρ M + P varme(t) (2.95) Ergo kan vi undgå de i Eksempel 2 gjorte antagelser om negligeabel friktion og hastighedsændring ved at tilføje leddet ( i u )ṁ/ρ M på højresiden af energiligningen (2.72).

29 Kapitel 3 Empiri I dette kapitel behandles den empiri, der er nødvendig for at kunne løse masse, energi -og impulsbalancerne. Afsnittet omhandler følgende: Varmetransmissionsuryk Friktionsuryk Tilstandsrelationer behandles i Kapitel Varmetransmissionsligninger I den generelle energibalanceligning (2.63) indgår der følgende uryk: P ydre,µ res,kort Effekt ved varmeledning og -konvektion. P ydre,µ res,lang Effekt ved varmestråling. I det efterfølgende beskrives de tre varmetransmissionsformer hver for sig Ledning Ledning er energitransmission i et homogent materiale, hvor varmen forplanter sig gennem selve materialet. På Figur 3.1 er temperaturprofilen i et volumen afgrænset af to planparallelle flader vist. Eksperimenter har vist, at effekten P l (t) (varmeflowet) gennem materialet er givet ved (Fourier s lov): T(x,t) T(x + x,t) P l (t) = λa (3.1) x hvor A [m 2 ] er fladearealet, x [m] er materialetykkelsen og λ [J/sek m o C] er varmeledningstallet. For x 0 findes P l (t) = λa T(x,t) x (3.2) Varmeledningstallet er eksperimentelt bestemt og kan findes ved opslag i diverse tabeller. I Tabel 3.1 er ca. værdier vist for udvalgte materialer. 22

30 ide 23 af 47 Temperatur T(x,t) T(x+ x,t) Pledning x x+ x ted Figur 3.1: Temperaturprofil varmeledning. Materiale Varmeledningstal kobber 370 messing 100 stål 50 glas 1 teglsten 0.5 glasuld 0.05 Tabel 3.1: Cirka-værdi for varmeledningstal [J/(sek m o C)] Eksempel 3.1 (Varmeledning) Det klassiske eksempel på varmeledning er den endimensionale varmeledning i et isotropt materiale. Tages der udgangspunkt i Ligning (2.63) for den generelle energiligning på Γ-form findes, idet der ses bort fra varmestråling: d udv = P ydre,µ res,kort (t) (3.3) hvor u er den indre energi, som i dette tilfælde er givet ved c p T, hvor c p er den specifikke varmekapacitet og T er temperaturen. Idet temperaturen er en funktion af både tid og sted findes ydre,µ c p T(x,t)dV = P t res,kort (t) = P l(t) (3.4) Betragtes et lille stykke x findes c p A x+ x x T(x,t)dx = P(x,t) P(x + x,t) (3.5) t Ved division på begge sider med x og for x 0 findes c p A T(x,t) t = P(x,t) x (3.6) Denne ligning giver sammen med Fourier s varmeledningsligning (3.2) λ 2 T(x,t) x 2 = c p T(x,t) t (3.7)

31 ide 24 af 47 I modeller af dynamiske systemer meages uryk for ledning i faste legemer sjældent, idet det som oftest enten er stærkt varmeledende stoffer (f.eks. metaller i rørvægge), hvor man kan regne med ens temperaturer over et kontrolvolumen, eller stærkt varmeisolerende stoffer (f.eks. sten- eller glasuld), hvor man kan se bort fra varmeakkumuleringen tråling Ved stråling transmitteres energien i form af elektromagnetiske bølger. om eksempel er effekten ved stråling P s mellem to planparallelle flader med temperaturene T 1 [K] og T 2 [K] givet ved: P s (t) = C(T 1 (t) 4 T 2 (t) 4 ) (3.8) hvor C [J/(sekK 4 )] betegnes som strålingsfaktoren. Effekt fra stråling er kun betydende ved meget høje temperaturer Konvektion Konvektion er varmetransmission hvor effekt overføres fra et sted i et strømmende fluid til et andet sted i fluidet. Den faktiske energitransmissionsproces fra en fluidpartikkel til en anden er stadig ledning, men energien kan transporteres fra et sted i rum et til et andet sted ved transport af selve partiklen. Denne sammensatte varmetransmissionsform forekommer når der er tale om effekt der overføres mellem et strømmende fluid og et fast stof. Man skelner imellem tvungen og fri konvektion. Tvungen konvektion opstår hvis fluidstrømningen er skabt af eksterne mekaniske mekanismer, som f.eks. en pumpe. Ved fri konvektion skyldes fluidbevægelsen udelukkende indre forskelle i massefylde, som f.eks. ved opvarmningen af vand i en kedel. Temperatur T1 T2 T3 T4 væskestrøm 0 L væskestrøm ted Figur 3.2: Temperaturprofil ledning og konvektion. Figur 3.2 viser temperaturprofilen i en plan væg, hvor der på begge sider strømmer en væske. om det ses af figuren regnes der med en konvektiv varmeovergang mellem væskens middeltemperatur (midlet over et tværsnit i stedaksen) og væskens temperatur tæt ved væggen

32 ide 25 af 47 variabel benævnelse enhed væskehastighed v m s 1 rørdiameter D m væske massefylde ρ kg m 3 væske varmekapacitet c m 2 s 2 o C 1 væske viskositet µ kg m 1 s 1 væske ledningsevne λ kg m s 3 o C 1 varmeovergangstal α kg s 3 o C 1 Tabel 3.2: Variable som forsøg har vist har betydning for α. (denne temperatur er lig med væggens temperatur i det ene endepunkt). Effekten P k er givet ved (Newton s afkølingslov) P k (t) = P ydre,µ kort (t) = αa[t 1 (t) T 2 (t)] (3.9) hvor A [m 2 ] er arealet og α [J/(s C m 2 )] er varmeovergangstallet. I modsætning til varmeledningstallet er varmeovergangstallet ingen stofkonstant, men afhænger af det strømmende fluids beskaffenhed, af strømningshastigheden og af strømningsarten. Varmeovergangstallet I energiligningen spiller den konvektive varmetransmission, og dermed varmeovergangstallet α, ofte en stor rolle. Ønskes en værdi af α vil man ofte blive præsenteret for et funktionsuryk af formen Nu = f(re,pr) (3.10) hvor Nu er Nusselts tal, Re er Reynolds tal og Pr er Pranls tal. Hvordan denne relation fremkommer, og hvordan den skal anvendes til bestemmelse af α, beskrives i det følgende eksempel. Eksempel 3.2 (Dimensionsanalyse) På Figur 3.3 er vist et væskegennemstrømmet rør. T2(t) P(t)= αa[t1(t)-t2(t)] v v D µ ρ T1(t) c λ Figur 3.3: Væskegennemstrømmet rør. Varmeovergangstallet α fra væskens middeltemperatur (midlet i et rørtværsnit) til væskens temperatur lige ved rørvæggen (som er lig med temperaturen på indersiden af røret) ønskes bestemt. Forsøg har vist, at variablene angivet i Tabel 3.2 har indflydelse på α.

33 ide 26 af 47 At sammenknytte disse 7 variable har vist sig meget vanskeligt ved hjælp af fysikkens love, derfor anvendes en metode, som kaldes dimensionsanalyse. En særlig interesse knytter sig til den del af dimensionsanalysen, som fører til dimensionsløse størrelser. I det følgende gennemgås dimensionsanalysen punkt for punkt med særligt henblik på det valgte eksempel: 1. Find de relevante variable, der har indflydelse på det betragtede problem. I eksemplet er variablene fundet til α = f(v,d,λ,ρ,c,µ) (3.11) 2. Dimensionen af variablene kan urykkes som en kombination af fundamentale dimensioner. I eksemplet er de fundamentale dimensioner givet som [kg], [m], [s] og [ o C]. Dimensionen af variablene kan derefter urykkes som vist i Tabel Indenfor et begrænset område, kan enhver funktion tilnærmes med produktet af de variable opløftet i hver sin eksponent hvor der må gælde at α = Kv a1 D a2 ρ a3 c a4 µ a5 λ a6 (3.12) Dim(α) = Dim(v) a1 Dim(D) a2 Dim(λ) a6 = [kg s 3 C 1 ] (3.13) idet K er dimensionsløs. Indsættes de fundamentale dimensioner findes (kgs 3 C 1 ) = (ms 1 ) a1 (m) a2 (kgm 3 ) a3 (m 2 s 2 C 1 ) a4 (kgm 1 s 1 ) a5 (kgms 3 C 1 ) a6 (3.14) 4. Ligning 3.14 løses med hensyn til a 1 a 6. Udskrives ligningerne for kilogram, meter, sekunder og grader celsius findes kg : 1 = a3 + a5 + a6 (3.15) m : 0 = a1 + a2 3a3 + 2a4 a5 + a6 (3.16) s : 3 = a1 2a4 a5 3a6 (3.17) C : 1 = a4 a6 (3.18) Dette giver 4 ligninger med 6 ubekene, hvorved arbitrære værdier tilskrives 2 af de indgående eksponenter, hvorefter de resterende 4 eksponenter kan bestemmes af de 4 ligninger. I [JW76] gives en mere omfattende beskrivelse af denne problemstilling, blan andet bestemmes, hvor mange indbyrdes uafhængige dimensionsløse størrelser der kan dannes (i dette eksempel 3). 5. De dimensionsløse størrelser bestemmes. Vælges a1 = a og a4 = b som kene, findes a2 = a 1, a3 = a, a5 = b a og a6 = 1 b. Indsættes dette i Ligning 3.12 findes α = Kv a D a 1 ρ a c b µ b a λ 1 b = Kv a D a D 1 ρ6ac b µ b µ a λλ b (3.19) ( ) ( ) αd Dρv a ( ) µc b = K λ µ λ (3.20)

34 ide 27 af 47 Ligning (3.20) er dimensionsløs. De tre indgående størrelser er givet ved Nu = αd λ Re = Dρv µ Pr = µc λ (3.21) (3.22) (3.23) De tre dimensionsløse produkter indgår i mange andre strømningssammenhænge og har fået navnene Nusselts tal, Reynolds tal og Pranls tal. Dette betyder at det konvektive varmeovergangstal er givet ved relationen Nu = KRe a Pr b (3.24) Eksperimenter, hvor sammenhørende værdier af Nu, Re og Pr måles, giver herefter den ønskede funktionssammenhæng. om det fremgår af blan andet [VDI84] og [Cha84] er mange konvektive varmetransmissionsproblemer løst ved hjælp af denne eksperimentelle metode. Eksempelvis gælder ifølge [Cha84] følgende relation ved tvungen konvektion for væsker Nu = 0.023Re 0.8 Pr n (3.25) hvor urykket gælder for n = 0.4 ved opvarmning (3.26) n = 0.3 ved afkøling (3.27) 0.7 < Pr < 160 (3.28) 10 4 < Re < 10 6 (3.29) 3.2 Friktionsuryk Der tages udgangspunkt i Ligning (2.90) som gælder for et vandret rørstykke L dṁ(t) = ( i (t) u (t))a F frik (t) (3.30) F frik, friktionskraften, opdeles i friktionskræfter langs en lige rørvæg F frik,lige og i friktionskræfter i formstykker (f.eks. bøjninger, indsnævringer, udvidelser, ventiler og blænder). For friktionskraften langs en lige rørvæg benyttes: F frik,lige = f 1 2 LAρ Mv 2 1 D (3.31) hvor f er en empirisk bestemt størrelse (Darcy friktions faktor), og D er rørets diameter. For formstykker anvendes den lignende formel: F frik,form = ξ 1 2 ρ MAv 2 (3.32)

35 ide 28 af 47 hvor ξ er en empiriske bestemt størrelse (formfaktoren). Den samlede friktionskraft findes til: F frik = ΣF frik,lige + ΣF frik,form (3.33) = (Σf L D + Σξ)1 2 ρ MAv 2 (3.34) Indføres urykket for friktionskrafterne i impulsligningen findes L dṁ(t) = ( i (t) u (t))a (Σf L D + Σξ)1 2 ρ MAv 2 (t) (3.35) Indsættes at v = ṁ/(ρ M A) og divideres med A findes: (t) = i (t) u (t) = L dṁ(t) + Σf L D + Σξ A 2A 2 ṁ 2 (t) (3.36) ρ M Darcy friktions faktoren f, som indgår i friktionsurykket for lige rørstykker er empirisk bestemt. F. eks. kan f findes efter det i Figur 3.4 viste Moody Diagram udfra rørdiameteren, Reynolds tal og den estimerede rørruhed. Figur 3.4: Darcy friktions faktoren f som funktion af rørdiameter, Reynolds tal og rørruhed [Cha84]. Formfaktoren, ξ, dækker over friktion gennem diverse formstykker. Formfaktoren kan findes ved tabelopslag i f.eks. Wärmeatlas [VDI84]. om eksempel kan ξ findes for rørbøjninger hvis Reynolds tal er større end 10 5 udfra Figur 3.5.

36 ide 29 af 47 Figur 3.5: Rørfriktionen ξ for bøjet rør, Re > 10 5, [VDI84].

37 Kapitel 4 ystemer med Fordelte Parametre I Kapitel 2 analyseredes systemer, der kunne karakteriseres udelukkende ved parametervariationer i tiden. ådanne systemer betegnes ofte som systemer med koncentrede parametre. Nu undersøges systemer, hvor parametrene er både sted- og tidsafhængige. Bemærk at den generelle Γ-ligning (2.42) gælder for systemer beskrevet både med koncentrede og med fordelte parameter. Problemet ved systemer beskrevet med fordelte parametre er, at man skal kende Γ-fordelingen over stedet indenfor for at evaluere integralerne. 4.1 Γ-Ligningen på Differentialform For at imødegå ovennævnte vanskeligheder ved systemer, der bedst beskrives med fordelte parametre, omskrives den generelle Γ-ligning til en differential ækvivalent. Jævnfør Ligning (2.42) gælder: d Γ(t) = d ρ Γ ( r,t)dv + j Γ ( r,t) ñda (4.1) Ved at anvende Gauss sætningen eller divergens-sætningen: F nda = FdV (4.2) på fladeintegralet i Γ-ligningen fås: d Γ(t) = d = ρ Γ ( r,t)dv + ( t ρ Γ ( r,t) + j Γ ( r,t) j Γ ( r,t)dv (4.3) ) dv (4.4) 30

Modeldannelse og simulering

Modeldannelse og simulering Modeldannelse og simulering Tom S. Pedersen, Palle Andersen tom@es.aau.dk pa@es.aau.dk Aalborg Universitet, Institut for Elektroniske Systemer Automation and Control Modeldannelse og simulering p. 1/21

Læs mere

Den svingende streng

Den svingende streng Den svingende streng Stig Andur Pedersen October 2, 2009 Ufuldstændigt udkast. Abstract 1 I det 18. århundrede blev differential- og integralregningen, som var introduceret af Newton, Leibniz og mange

Læs mere

Temaopgave: Parameterkurver Form: 6 timer med vejledning Januar 2010

Temaopgave: Parameterkurver Form: 6 timer med vejledning Januar 2010 Temaopgave: Parameterkurver Form: 6 timer med vejledning Januar 1 Parameterkurver Vi har tidligere set på en linjes parameterfremstilling, feks af typen: 1 OP = t +, hvor t R, og hvor OP er stedvektor

Læs mere

Variabel- sammenhænge

Variabel- sammenhænge Variabel- sammenhænge Udgave 2 2009 Karsten Juul Dette hæfte kan bruges som start på undervisningen i variabelsammenhænge for stx og hf. Hæftet er en introduktion til at kunne behandle to sammenhængende

Læs mere

Funktionalligninger - løsningsstrategier og opgaver

Funktionalligninger - løsningsstrategier og opgaver Funktionalligninger - løsningsstrategier og opgaver Altså er f (f (1)) = 1. På den måde fortsætter vi med at samle oplysninger om f og kombinerer dem også med tidligere oplysninger. Hvis vi indsætter =

Læs mere

Tilstandsligningen for ideale gasser

Tilstandsligningen for ideale gasser ilstandsligningen for ideale gasser /8 ilstandsligningen for ideale gasser Indhold. Udledning af tilstandsligningen.... Konsekvenser af tilstandsligningen...4 3. Eksempler og opgaver...5 4. Daltons lov...6

Læs mere

De fire Grundelementer og Verdensrummet

De fire Grundelementer og Verdensrummet De fire Grundelementer og Verdensrummet Indledning Denne teori går fra Universets fundament som nogle enkelte små frø til det mangfoldige Univers vi kender og beskriver også hvordan det tomme rum og derefter

Læs mere

Partikelbevægelser i magnetfelter

Partikelbevægelser i magnetfelter Da fusion skal foregå ved en meget høj temperatur, 100 millioner grader, så der kan foregå en selvforsynende fusion, kræves der en metode til indeslutning af plasmaet, idet de materialer vi kender med

Læs mere

Afstandsformlerne i Rummet

Afstandsformlerne i Rummet Afstandsformlerne i Rummet Frank Nasser 12. april 2011 c 2008-2011. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her. Bemærk:

Læs mere

Delmængder af Rummet

Delmængder af Rummet Delmængder af Rummet Frank Nasser 11. juli 2011 2008-2011. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her. Indhold 1 Introduktion

Læs mere

Opg. 1. Cylinder. Opg. 1 spm. a løses i hånden. Cylinderens radius er 10 cm og keglen er 20 cm høj. Paraboloidens profil kan beskrives med ligningen

Opg. 1. Cylinder. Opg. 1 spm. a løses i hånden. Cylinderens radius er 10 cm og keglen er 20 cm høj. Paraboloidens profil kan beskrives med ligningen Opg. 1 spm. a løses i hånden. Cylinderens radius er 10 cm og keglen er 20 cm høj. Paraboloidens profil kan beskrives med ligningen Opg. 1 a) Bestem de funktioner h(t), der beskriver vandhøjden i beholderen,

Læs mere

Ligninger med reelle løsninger

Ligninger med reelle løsninger Ligninger med reelle løsninger, marts 2008, Kirsten Rosenkilde 1 Ligninger med reelle løsninger Når man løser ligninger, er der nogle standardmetoder som er vigtige at kende. Vurdering af antallet af løsninger

Læs mere

Den bedste dåse, en optimeringsopgave

Den bedste dåse, en optimeringsopgave bksp-20-15e Side 1 af 7 Den bedste dåse, en optimeringsopgave Mange praktiske anvendelser af matematik drejer sig om at optimere en variabel ved at vælge en passende kombination af andre variable. Det

Læs mere

Løsning af præmie- og ekstraopgave

Løsning af præmie- og ekstraopgave 52 Læserbidrag Løsning af præmie- og ekstraopgave 23. årgang, nr. 1 Martin Wedel Jacobsen Både præmieopgaven og ekstraopgaven er specialtilfælde af en mere generel opgave: Hvor mange stykker kan en n-dimensionel

Læs mere

Pendulbevægelse. Måling af svingningstid: Jacob Nielsen 1

Pendulbevægelse. Måling af svingningstid: Jacob Nielsen 1 Pendulbevægelse Jacob Nielsen 1 Figuren viser svingningstiden af et pendul i sekunder som funktion af udsvinget i grader. For udsving mindre end 20 grader er svingningstiden med god tilnærmelse konstant.

Læs mere

Arbejdsmiljøgruppens problemløsning

Arbejdsmiljøgruppens problemløsning Arbejdsmiljøgruppens problemløsning En systematisk fremgangsmåde for en arbejdsmiljøgruppe til løsning af arbejdsmiljøproblemer Indledning Fase 1. Problemformulering Fase 2. Konsekvenser af problemet Fase

Læs mere

Tal, funktioner og grænseværdi

Tal, funktioner og grænseværdi Tal, funktioner og grænseværdi Skriv færdig-eksempler der kan udgøre en væsentlig del af et forløb der skal give indsigt vedrørende begrebet grænseværdi og nogle nødvendige forudsætninger om tal og funktioner

Læs mere

Teknologi & Kommunikation

Teknologi & Kommunikation Side 1 af 6 Indledning Denne note omhandler den lineære funktion, hvis graf i et koordinatsystem er en ret linie. Funktionsbegrebet knytter to størrelser (x og y) sammen, disse to størrelser er afhængige

Læs mere

Afstand fra et punkt til en linje

Afstand fra et punkt til en linje Afstand fra et punkt til en linje Frank Villa 6. oktober 2014 Dette dokument er en del af MatBog.dk 2008-2012. IT Teaching Tools. ISBN-13: 978-87-92775-00-9. Se yderligere betingelser for brug her. Indhold

Læs mere

Epistel E2 Partiel differentiation

Epistel E2 Partiel differentiation Epistel E2 Partiel differentiation Benny Lautrup 19 februar 24 Funktioner af flere variable kan differentieres efter hver enkelt, med de øvrige variable fasthol Definitionen er f(x, y) x f(x, y) f(x +

Læs mere

Sæt ord pa sproget. Indhold. Mål. November 2012

Sæt ord pa sproget. Indhold. Mål. November 2012 Sæt ord pa sproget November 2012 Indhold Mål... 1 Baggrund... 1 Projektets mål... 1 Sammenhæng... 2 1 Beskrivelse af elevernes potentialer og barrierer... 2 2 Beskrivelse af basisviden og hverdagssprog...

Læs mere

Reelle tal. Symbolbehandlingskompetencen er central gennem arbejdet med hele kapitlet i elevernes arbejde med tal og regneregler.

Reelle tal. Symbolbehandlingskompetencen er central gennem arbejdet med hele kapitlet i elevernes arbejde med tal og regneregler. Det første kapitel i grundbogen til Kolorit i 9. klasse handler om de reelle tal. Første halvdel af kapitlet har karakter af at være opsamlende i forhold til, hvad eleverne har arbejdet med på tidligere

Læs mere

Vands bevægelse i kanaler

Vands bevægelse i kanaler Vands bevægelse i kanaler Væskemængde pr tid Væskemængden pr tid Q i et lukket rør er defineret som det volumen ΔV, der passerer et givet sted i røret i løbet af tidsrummet Δt. Dvs at V Q (1) t Hvis rørets

Læs mere

Om hvordan Google ordner websider

Om hvordan Google ordner websider Om hvordan Google ordner websider Hans Anton Salomonsen March 14, 2008 Man oplever ofte at man efter at have givet Google et par søgeord lynhurtigt får oplysning om at der er fundet et stort antal - måske

Læs mere

Matematisk modellering og numeriske metoder. Lektion 18

Matematisk modellering og numeriske metoder. Lektion 18 Matematisk modellering numeriske metoder Lektion 18 Morten Grud Rasmussen 12. november, 2013 1 Numeriske metoder til førsteordens ODE er [Bens afsnit 21.1 side 898] 1.1 Euler-metoden Vi stiftede allerede

Læs mere

TALTEORI Wilsons sætning og Euler-Fermats sætning.

TALTEORI Wilsons sætning og Euler-Fermats sætning. Wilsons sætning og Euler-Fermats sætning, marts 2007, Kirsten Rosenkilde 1 TALTEORI Wilsons sætning og Euler-Fermats sætning. Disse noter forudsætter et grundlæggende kendskab til talteori som man kan

Læs mere

Hypotese test. Repetition fra sidst Hypoteser Test af middelværdi Test af andel Test af varians Type 1 og type 2 fejl Signifikansniveau

Hypotese test. Repetition fra sidst Hypoteser Test af middelværdi Test af andel Test af varians Type 1 og type 2 fejl Signifikansniveau ypotese test Repetition fra sidst ypoteser Test af middelværdi Test af andel Test af varians Type 1 og type fejl Signifikansniveau Konfidens intervaller Et konfidens interval er et interval, der estimerer

Læs mere

Matematik B. Højere forberedelseseksamen

Matematik B. Højere forberedelseseksamen Matematik B Højere forberedelseseksamen hfe11-mat/b-3108011 Onsdag den 31. august 011 kl. 9.00-13.00 Opgavesættet er delt i to dele. Delprøven uden hjælpemidler består af opgave 1-6 med i alt 6 spørgsmål.

Læs mere

Matematik A. Studentereksamen. Digital eksamensopgave med adgang til internettet

Matematik A. Studentereksamen. Digital eksamensopgave med adgang til internettet Matematik A Studentereksamen Digital eksamensopgave med adgang til internettet 1stx131-MATn/A-405013 Fredag den 4. maj 013 kl. 09.00-14.00 Opgavesættet er delt i to dele. Delprøve 1: timer med autoriseret

Læs mere

TALTEORI Primfaktoropløsning og divisorer.

TALTEORI Primfaktoropløsning og divisorer. Primfaktoropløsning og divisorer, oktober 2008, Kirsten Rosenkilde 1 TALTEORI Primfaktoropløsning og divisorer. Disse noter forudsætter et grundlæggende kendskab til talteori som man kan få i Marianne

Læs mere

TALTEORI Wilsons sætning og Euler-Fermats sætning.

TALTEORI Wilsons sætning og Euler-Fermats sætning. Wilsons sætning og Euler-Fermats sætning, marts 2007, Kirsten Rosenkilde 1 TALTEORI Wilsons sætning og Euler-Fermats sætning. Disse noter forudsætter et grundlæggende kendskab til talteori som man kan

Læs mere

Forslag til løsning af Opgaver til ligningsløsning (side172)

Forslag til løsning af Opgaver til ligningsløsning (side172) Forslag til løsning af Opgaver til ligningsløsning (side17) Opgave 1 Hvis sønnens alder er x år, så er faderens alder x år. Der går x år, før sønnen når op på x år. Om x år har faderen en alder på: x x

Læs mere

Modul 5: Test for én stikprøve

Modul 5: Test for én stikprøve Forskningsenheden for Statistik ST01: Elementær Statistik Bent Jørgensen Modul 5: Test for én stikprøve 5.1 Test for middelværdi................................. 1 5.1.1 t-fordelingen.................................

Læs mere

VEKTOR I RUMMET PROJEKT 1. Jacob Weng & Jeppe Boese. Matematik A & Programmering C. Avedøre-værket. Roskilde Tekniske Gymnasium 3.4. Fag.

VEKTOR I RUMMET PROJEKT 1. Jacob Weng & Jeppe Boese. Matematik A & Programmering C. Avedøre-værket. Roskilde Tekniske Gymnasium 3.4. Fag. VEKTOR I RUMMET PROJEKT 1 Fag Matematik A & Programmering C Tema Avedøre-værket Jacob Weng & Jeppe Boese Roskilde Tekniske Gymnasium 3.4 07-10-2010 1 Vektor i rummet INDLEDNING Projektet omhandler et af

Læs mere

Kontinuerte systemer.

Kontinuerte systemer. Kontinuerte systemer. Vi har hidtil beskæftiget os med diskrete systemer, dvs. systemer, hvis tilstand er beskrevet ved et endeligt antal frihedsgrader (normalt få). Ved studiet af transportprocesser i

Læs mere

Matematik. Matematiske kompetencer

Matematik. Matematiske kompetencer Matematiske kompetencer skelne mellem definitioner og sætninger, mellem enkelttilfælde og generaliseringer og anvende denne indsigt til at udforske og indgå i dialog om forskellige matematiske begrebers

Læs mere

EKSEMPEL PÅ INTERVIEWGUIDE

EKSEMPEL PÅ INTERVIEWGUIDE EKSEMPEL PÅ INTERVIEWGUIDE Briefing Vi er to specialestuderende fra Institut for Statskundskab, og først vil vi gerne sige tusind tak fordi du har taget dig tid til at deltage i interviewet! Indledningsvis

Læs mere

Differentiation af Logaritmer

Differentiation af Logaritmer Differentiation af Logaritmer Frank Nasser 11. juli 2011 2008-2011. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her. Indhold

Læs mere

Arealer under grafer

Arealer under grafer HJ/marts 2013 1 Arealer under grafer 1 Arealer og bestemt integral Som bekendt kan vi bruge integralregning til at beregne arealer under grafer. Helt præcist har vi denne sætning. Sætning 1 (Analysens

Læs mere

Forelæsning 8: Inferens for varianser (kap 9)

Forelæsning 8: Inferens for varianser (kap 9) Kursus 02402 Introduktion til Statistik Forelæsning 8: Inferens for varianser (kap 9) Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220 Danmarks Tekniske Universitet 2800 Lyngby

Læs mere

Projekt 10.1 Er der huller i Euklids argumentation? Et moderne aksiomsystem (især for A)

Projekt 10.1 Er der huller i Euklids argumentation? Et moderne aksiomsystem (især for A) Projekt 10.1 Er der huller i Euklids argumentation? Et moderne aksiomsystem (især for A) Indhold Introduktion... 2 Hilberts 16 aksiomer Et moderne, konsistent og fuldstændigt aksiomsystem for geometri...

Læs mere

Facitliste til Trigonometri i praksis 8.-9. klasse Erik Bilsted 1.udgave, 1. oplag

Facitliste til Trigonometri i praksis 8.-9. klasse Erik Bilsted 1.udgave, 1. oplag [1] Facitliste til Trigonometri i praksis 8.-9. klasse Erik Bilsted 1.udgave, 1. oplag 2009 Alinea København Kopiering af denne bog er kun tilladt ifølge aftale med COPY-DAN Forlagsredaktion: Heidi Freiberg

Læs mere

Teknologi & kommunikation

Teknologi & kommunikation Grundlæggende Side af NV Elektrotekniske grundbegreber Version.0 Spænding, strøm og modstand Elektricitet: dannet af det græske ord elektron, hvilket betyder rav, idet man tidligere iagttog gnidningselektricitet

Læs mere

Opgave 1 Alle tallene er reelle tal, så opgaven er at finde den mindste talmængde, som resultaterne tilhører.

Opgave 1 Alle tallene er reelle tal, så opgaven er at finde den mindste talmængde, som resultaterne tilhører. Opgave 1 Alle tallene er reelle tal, så opgaven er at finde den mindste talmængde, som resultaterne tilhører. A. Q B. R (sidelængden er 5, som er irrational) C. Q Opgave 2 A. 19 = 1 19 24 = 2 3 3 36 =

Læs mere

Inverse funktioner. John V Petersen

Inverse funktioner. John V Petersen Inverse funktioner John V Petersen Indhold Indledning: Indledende eksempel. Grafen for en funktion. Og grafen for den inverse funktion.... 3 Afbildning, funktion og inverse funktion: forklaringer og definitioner...

Læs mere

Kapitel 3 Centraltendens og spredning

Kapitel 3 Centraltendens og spredning Kapitel 3 Centraltendens og spredning Peter Tibert Stoltze stat@peterstoltze.dk Elementær statistik F2011 1 Indledning 2 Centraltendens 3 Spredning 4 Praktisk beregning 5 Fraktiler 6 Opsamling 1 Indledning

Læs mere

Notat om håndtering af aktualitet i matrikulære sager

Notat om håndtering af aktualitet i matrikulære sager Notat om håndtering af aktualitet i matrikulære sager Ajourføring - Ejendomme J.nr. Ref. lahni/pbp/jl/ruhch Den 7. marts 2013 Introduktion til notatet... 1 Begrebsafklaring... 1 Hvorfor er det aktuelt

Læs mere

Er A åben? Er A afsluttet? Er A en Borel-mængde? [Vink: Prøv at skriv A som en tællelig forening af afsluttede mængder.

Er A åben? Er A afsluttet? Er A en Borel-mængde? [Vink: Prøv at skriv A som en tællelig forening af afsluttede mængder. Analyse Øvelser Rasmus Sylvester Bryder 10. og 13. september 013 Supplerende opgave 4 Betragt mængden A = {(x, y) R x + y 1, x < y}. Er A åben? Er A afsluttet? Er A en Borel-mængde? [Vink: Prøv at skriv

Læs mere

Trivsel og fravær i folkeskolen

Trivsel og fravær i folkeskolen Trivsel og fravær i folkeskolen Sammenfatning De årlige trivselsmålinger i folkeskolen måler elevernes trivsel på fire forskellige områder: faglig trivsel, social trivsel, støtte og inspiration og ro og

Læs mere

Secret Sharing. Olav Geil Institut for Matematiske Fag Aalborg Universitet email: olav@math.aau.dk URL: http://www.math.aau.dk/ olav.

Secret Sharing. Olav Geil Institut for Matematiske Fag Aalborg Universitet email: olav@math.aau.dk URL: http://www.math.aau.dk/ olav. 1 Læsevejledning Secret Sharing Olav Geil Institut for Matematiske Fag Aalborg Universitet email: olav@math.aau.dk URL: http://www.math.aau.dk/ olav September 2006 Nærværende note er tænkt som et oplæg

Læs mere

Djøf Offentlig Formandens vedtægtstale

Djøf Offentlig Formandens vedtægtstale Djøf Offentlig Formandens vedtægtstale Så er vi kommet til dagens højdepunkt, som jeg ved, alle har glædet sig til. Ja, jeg joker, og faktisk også lidt med urette. For jeg ser de vedtægtsændringer, som

Læs mere

Når strømstyrken ikke er for stor, kan batteriet holde spændingsforskellen konstant på 12 V.

Når strømstyrken ikke er for stor, kan batteriet holde spændingsforskellen konstant på 12 V. For at svare på nogle af spørgsmålene i dette opgavesæt kan det sagtens være, at du bliver nødt til at hente informationer på internettet. Til den ende kan oplyses, at der er anbragt relevante link på

Læs mere

DesignMat Uge 11 Vektorrum

DesignMat Uge 11 Vektorrum DesignMat Uge Vektorrum Preben Alsholm Forår 200 Vektorrum. Definition af vektorrum Definition af vektorrum Lad L betegne R eller C. Lad V være en ikke-tom mængde udstyret med en addition + og en multiplikation

Læs mere

Harmoniske Svingninger

Harmoniske Svingninger Harmoniske Svingninger Frank Nasser 14. april 2011 c 2008-2011. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her. Bemærk: Dette

Læs mere

Vejledning til skriftlig prøve i fysik/kemi

Vejledning til skriftlig prøve i fysik/kemi Vejledning til skriftlig prøve i fysik/kemi Styrelsen for Undervisning og Kvalitet Januar 2016 1 Indhold Indledning... 3 Mål og krav... 4 Indhold... 5 Hjælpemidler... 5 Opgavetyper... 6 Eksempler på opgaver...

Læs mere

U = φ. R = ρ l A. Figur 1 Sammenhængen mellem potential, φ og spændingsfald, U: U = φ = φ 1 φ 2.

U = φ. R = ρ l A. Figur 1 Sammenhængen mellem potential, φ og spændingsfald, U: U = φ = φ 1 φ 2. Ohms lov Vi vil samle os en række byggestene, som kan bruges i modelleringen af fysiske systemer. De første to var hhv. en spændingskilde og en strømkilde. Disse elementer (sources) er aktive og kan tilføre

Læs mere

Matematik A Vejledende opgaver 5 timers prøven

Matematik A Vejledende opgaver 5 timers prøven Højere Teknisk Eksamen 007 Matematik A Vejledende opgaver 5 timers prøven Undervisningsministeriet Prøvens varighed er 5 timer. Opgavebesvarelsen skal dokumenteres/begrundes. Opgavebesvarelsen skal udformes

Læs mere

Statsforvaltningens brev til en journalist. Att.: XXXX. Henvendelse vedrørende afslag på aktindsigt

Statsforvaltningens brev til en journalist. Att.: XXXX. Henvendelse vedrørende afslag på aktindsigt 2015-71725 Statsforvaltningens brev til en journalist Dato: 18-12- 2015 Att.: XXXX Tilsynet Henvendelse vedrørende afslag på aktindsigt Du har i e-mail af 2. november 2015 meddelt Aalborg Kommune, at du

Læs mere

brikkerne til regning & matematik potenstal og rodtal F+E+D preben bernitt

brikkerne til regning & matematik potenstal og rodtal F+E+D preben bernitt brikkerne til regning & matematik potenstal og rodtal F+E+D preben bernitt brikkerne til regning & matematik potenstal og rodtal F ISBN: 978-87-92488-06-0 2. Udgave som E-bog 2010 by bernitt-matematik.dk

Læs mere

Bogstavregning. Formler... 46 Reduktion... 47 Ligninger... 48. Bogstavregning Side 45

Bogstavregning. Formler... 46 Reduktion... 47 Ligninger... 48. Bogstavregning Side 45 Bogstavregning Formler... 6 Reduktion... 7 Ligninger... 8 Bogstavregning Side I bogstavregning skal du kunne regne med bogstaver og skifte bogstaver ud med tal. Formler En formel er en slags regne-opskrift,

Læs mere

Induktion: fra naturlige tal til generaliseret skønhed Dan Saattrup Nielsen

Induktion: fra naturlige tal til generaliseret skønhed Dan Saattrup Nielsen 36 Induktion: fra naturlige tal til generaliseret skønhed Dan Saattrup Nielsen En artikel om induktion, hvordan er det overhovedet muligt? Det er jo trivielt! Bevis ved induktion er en af de ældste matematiske

Læs mere

Skoleudvalget i Fredensborg Kommune har besluttet at ca. 10-12% lønmidlerne skal fordeles på baggrund af sociale indikatorer

Skoleudvalget i Fredensborg Kommune har besluttet at ca. 10-12% lønmidlerne skal fordeles på baggrund af sociale indikatorer Notat om fordeling af midlerne mellem Fredensborgs skoler med udgangspunkt i elevernes sociale baggrund Venturelli Consulting Oktober 2006 1 Indholdsfortegnelse 1. Resume...3 2. Baggrund...3 3. Den grundlæggende

Læs mere

DM02 opgaver ugeseddel 2

DM02 opgaver ugeseddel 2 DM0 opgaver ugeseddel af Fiona Nielsen 16. september 003 Øvelsesopgaver 9/9, 10/9 og 11/9 1. Vis, at 1 3 + 3 3 + 5 3 +... + (n 1) 3 = n 4 n. Omskriver til summationsformel: (i 1) 3 = n 4 n Bevis ved induktion

Læs mere

https://www.uvm.dk/~/media/uvm/filer/udd/folke/pdf14/nov/141127_initiativer_til_videreudvikling _af_folkeskolens_proever.pdf

https://www.uvm.dk/~/media/uvm/filer/udd/folke/pdf14/nov/141127_initiativer_til_videreudvikling _af_folkeskolens_proever.pdf Digitalt prøvesæt Dette er et opgavesæt, som jeg har forsøgt at forestille mig, det kan se ud, hvis det skal leve op til ordene i det der er initiativ 3 i rækken af initiativer til videreudvikling af folkeskolens

Læs mere

Projekt 4.8. Kerners henfald (Excel)

Projekt 4.8. Kerners henfald (Excel) Projekt.8. Kerners henfald (Excel) Når radioaktive kerner henfalder under udsendelse af stråling, sker henfaldet I følge kvantemekanikken helt spontant, dvs. rent tilfældigt uden nogen påviselig årsag.

Læs mere

Bilag 1 3 til. 5.3 Sikkerhedsorganisationens værktøj til læring af ulykker

Bilag 1 3 til. 5.3 Sikkerhedsorganisationens værktøj til læring af ulykker Bilag 1 3 til 5.3 Sikkerhedsorganisationens værktøj til læring af ulykker 1 Bilag 1: Definition af Arbejdsskadebegrebet Arbejdsulykker og arbejdsbetingede lidelser er forskellige former for Arbejdsskader.

Læs mere

Differentialregning Infinitesimalregning

Differentialregning Infinitesimalregning Udgave 2.1 Differentialregning Infinitesimalregning Noterne gennemgår begreberne differentialregning, og anskuer dette som et derligere redskab til vækst og funktioner. Noterne er supplement til kapitel

Læs mere

Niels Jonassen ELEKTRO MAGNETISME. Polyteknisk Forlag

Niels Jonassen ELEKTRO MAGNETISME. Polyteknisk Forlag Niels Jonassen ELEKTRO MAGNETISME Polyteknisk Forlag FORORD Denne bog er en stærkt revideret og omarbejdet udgave af noter og kompendier, der siden 1984 har været anvendt ved kurser i elektromagnetisme

Læs mere

Dynamik. 1. Kræfter i ligevægt. Overvejelser over kræfter i ligevægt er meget vigtige i den moderne fysik.

Dynamik. 1. Kræfter i ligevægt. Overvejelser over kræfter i ligevægt er meget vigtige i den moderne fysik. M4 Dynamik 1. Kræfter i ligevægt Overvejelser over kræfter i ligevægt er meget vigtige i den moderne fysik. Fx har nøglen til forståelsen af hvad der foregår i det indre af en stjerne været betragtninger

Læs mere

Matematik A. Studentereksamen. Forsøg med digitale eksamensopgaver med adgang til internettet

Matematik A. Studentereksamen. Forsøg med digitale eksamensopgaver med adgang til internettet Matematik A Studentereksamen Forsøg med digitale eksamensopgaver med adgang til internettet frs102-matn/a-12082010 Torsdag den 12. august 2010 kl. 09.00-14.00 Opgavesættet er delt i to dele. Delprøve

Læs mere

Undervisningsbeskrivelse for fysik A 2. A 2011/2012

Undervisningsbeskrivelse for fysik A 2. A 2011/2012 Undervisningsbeskrivelse for fysik A 2. A 2011/2012 Termin Undervisningen afsluttes den 15. maj 2012 Skoleåret hvor undervisningen har foregået: 2011-2012 Institution Skive Teknisk Gymnasium Uddannelse

Læs mere

Analyse 1, Prøve 4. 25. juni 2009. r+1. Men vi har øjensynligt, at 2. r r+1

Analyse 1, Prøve 4. 25. juni 2009. r+1. Men vi har øjensynligt, at 2. r r+1 Analyse 1, Prøve 4 25. juni 29 Alle henvisninger til CB er henvisninger til Metriske Rum (1997, Christian Berg), alle henvisninger til TL er til Kalkulus (26, Tom Lindstrøm), og alle henvisninger til Opgaver

Læs mere

Ikke-lineære funktioner

Ikke-lineære funktioner I elevernes arbejde med funktioner på tidligere klassetrin har hovedvægten ligget på sammenhænge, der kan beskrives med lineære funktioner. Dette kapitel berører ligefrem proportionalitet og stykkevist

Læs mere

Socialudvalget L 107 - Svar på Spørgsmål 6 Offentligt

Socialudvalget L 107 - Svar på Spørgsmål 6 Offentligt Socialudvalget L 107 - Svar på Spørgsmål 6 Offentligt Folketingets Socialudvalg Departementet Holmens Kanal 22 1060 København K Dato: 28. februar 2006 Tlf. 3392 9300 Fax. 3393 2518 E-mail sm@sm.dk KWA/

Læs mere

TI-B 103 (94) Prøvningsmetode Aktiveringsenergi i den relative hastighedsfunktion

TI-B 103 (94) Prøvningsmetode Aktiveringsenergi i den relative hastighedsfunktion TI-B 03 (94) Aktiveringsenergi i den relative hastighedsfunktion Teknologisk Institut, Byggeri TI-B 03 (94) Aktiveringsenergi i den relative hastighedsfunktion Deskriptorer: beton, egenskaber, modenhed,

Læs mere

Lektion 5 Det bestemte integral

Lektion 5 Det bestemte integral a f(x) dx = F (b) F (a) Lektion 5 Det bestemte integral Definition Integralregningens Middelværdisætning Integral- og Differentialregningens Hovedsætning Beregning af bestemte integraler Regneregler Areal

Læs mere

eller været tilmeldt alle fagmoduler, som indgår i studiet på HD 1. del

eller været tilmeldt alle fagmoduler, som indgår i studiet på HD 1. del Aarhus Universitet AU Herning School of Business and Social Sciences Birk Centerpark 15, 7400 Herning Fagmodulets navn Afsluttende projekt Udbydende udd.retning samt kursuskode Er fagmodulet obligatorisk?

Læs mere

Kører du altid 110? Af Seniorkonsulent Uwe Hansen, Metro Therm 17.02.2016. Hvor svært kan det være at vælge varmtvandsbeholder til en-familieboligen?

Kører du altid 110? Af Seniorkonsulent Uwe Hansen, Metro Therm 17.02.2016. Hvor svært kan det være at vælge varmtvandsbeholder til en-familieboligen? Kører du altid 110? Af Seniorkonsulent Uwe Hansen, Metro Therm 17.02.2016 Hvor svært kan det være at vælge varmtvandsbeholder til en-familieboligen? Kravene til en varmtvandsbeholder har ændret sig gennem

Læs mere

2013-7. Vejledning om mulighederne for genoptagelse efter såvel lovbestemte som ulovbestemte regler. 10. april 2013

2013-7. Vejledning om mulighederne for genoptagelse efter såvel lovbestemte som ulovbestemte regler. 10. april 2013 2013-7 Vejledning om mulighederne for genoptagelse efter såvel lovbestemte som ulovbestemte regler Ombudsmanden rejste af egen drift en sag om arbejdsskademyndighedernes vejledning om mulighederne for

Læs mere

Introduktion til Laplace transformen (Noter skrevet af Nikolaj Hess-Nielsen sidst revideret marts 2013)

Introduktion til Laplace transformen (Noter skrevet af Nikolaj Hess-Nielsen sidst revideret marts 2013) Introduktion til Laplace transformen (oter skrevet af ikolaj Hess-ielsen sidst revideret marts 23) Integration handler ikke kun om arealer. Tværtimod er integration basis for mange af de vigtigste værktøjer

Læs mere

Spørgsmål og svar om håndtering af udenlandsk udbytteskat marts 2016

Spørgsmål og svar om håndtering af udenlandsk udbytteskat marts 2016 Indhold AFTALENS FORMÅL... 2 Hvilken service omfatter aftalen?... 2 Hvad betyder skattereduktion, kildereduktion og tilbagesøgning?... 2 AFTALENS INDHOLD OG OPBYGNING... 3 Hvilke depoter er omfattet af

Læs mere

Grundlæggende Opgaver

Grundlæggende Opgaver Grundlæggende Opgaver Opgave 1 En retvinklet trekant har sine vinkelspidser i (,4),(4, 4) og (, 4). a) Hvor store er kateterne? b) Hvor store er hypotenusen? c) Beregn trekantens areal. d) Bestem kateterne,

Læs mere

Kurver i planen og rummet

Kurver i planen og rummet Kurver i planen og rummet John Olsen 1 Indledning Dette sæt noter er forelæsningsnoter til foredraget Kurver i planen og rummet. Noterne er beregnet til at blive brugt sammen med foredraget. Afsnit 2 er

Læs mere

Årsplan matematik 7 kl 2015/16

Årsplan matematik 7 kl 2015/16 Årsplan matematik 7 kl 2015/16 I matematik bruger vi bogsystemet Sigma som grundmateriale, og har matematikfessor som suplerende materiale, samt kopisider. I systemet er der,ud over grundbogen, også kopiark

Læs mere

Kvantitative Metoder 1 - Forår 2007

Kvantitative Metoder 1 - Forår 2007 Dagens program Afsnit 3.3-3.5 Varians Eksempel: Forventet nytte Kovarians og korrelation Middelværdi og varians af summer af stokastiske variabler Eksempel: Porteføljevalg 1 Beskrivelse af fordelinger

Læs mere

Bernoulli s lov. Med eksempler fra Hydrodynamik og aerodynamik. Indhold

Bernoulli s lov. Med eksempler fra Hydrodynamik og aerodynamik. Indhold Bernoulli s lov Med eksempler fra Indhold 1. Indledning...1 2. Strømning i væsker...1 3. Bernoulli s lov...2 4. Tømning af en beholder via en hane i bunden...4 Ole Witt-Hansen Køge Gymnasium 2008 Bernoulli

Læs mere

Årsafslutning i SummaSummarum 4

Årsafslutning i SummaSummarum 4 Årsafslutning i SummaSummarum 4 Som noget helt nyt kan du i SummaSummarum 4 oprette et nyt regnskabsår uden, at det gamle (eksisterende) først skal afsluttes. Dette betyder, at det nu er muligt at bogføre

Læs mere

Funktioner af flere variable

Funktioner af flere variable Funktioner af flere variable Stud. Scient. Martin Sparre Københavns Universitet 23-10-2006 Definition 1 (Definition af en funktion af flere variable). En funktion af n variable defineret på en delmængde,

Læs mere

Forslag til principerklæring til vedtagelse på FOAs strukturkongres 12. og 13. januar 2006 i Aalborg

Forslag til principerklæring til vedtagelse på FOAs strukturkongres 12. og 13. januar 2006 i Aalborg Forslag til principerklæring til vedtagelse på FOAs strukturkongres 12. og 13. januar 2006 i Aalborg Principperne i denne erklæring angiver retningen for FOAs videre strukturelle og demokratiske udvikling.

Læs mere

Lektion 6 Logaritmefunktioner

Lektion 6 Logaritmefunktioner Lektion 6 Logaritmefunktioner Den naturlige logaritmefunktion Andre logaritmefunktioner log() Regneregler Integration ln() =, ln(e) = ln(a b) = ln(a) + ln(b) ln(a r ) = r ln(a) d = ln + C En berømt grænseværdi

Læs mere

År 2000 2001 2002 2003 2004 2005. Løn (kr.) 108,95 112,79 117,69 122,92 127,17 130,76

År 2000 2001 2002 2003 2004 2005. Løn (kr.) 108,95 112,79 117,69 122,92 127,17 130,76 Eksamensspørgsmål i ma til 1b sommeren 2010 1. Procent og rentesregning Gør rede for begrebet fremskrivningsfaktor og giv eksempler på anvendelse heraf. Forklar formlen til kapitalfremskrivning (i daglig

Læs mere

Grundvandsmodel for infiltrationsbassin ved Resendalvej

Grundvandsmodel for infiltrationsbassin ved Resendalvej Grundvandsmodel for infiltrationsbassin ved Resendalvej Figur 1 2/7 Modelområde samt beregnet grundvandspotentiale Modelområdet måler 650 x 700 m Der er tale om en kombination af en stationær og en dynamisk

Læs mere

APV og trivsel 2015. APV og trivsel 2015 1

APV og trivsel 2015. APV og trivsel 2015 1 APV og trivsel 2015 APV og trivsel 2015 1 APV og trivsel 2015 I efteråret 2015 skal alle arbejdspladser i Frederiksberg Kommune udarbejde en ny grundlæggende APV og gennemføre en trivselsundersøgelse.

Læs mere

Mini SRP. Afkøling. Klasse 2.4. Navn: Jacob Pihlkjær Hjortshøj, Jonatan Geysner Hvidberg og Kevin Høst Husted

Mini SRP. Afkøling. Klasse 2.4. Navn: Jacob Pihlkjær Hjortshøj, Jonatan Geysner Hvidberg og Kevin Høst Husted Mini SRP Afkøling Klasse 2.4 Navn: Jacob Pihlkjær Lærere: Jørn Christian Bendtsen og Karl G Bjarnason Roskilde Tekniske Gymnasium SO Matematik A og Informations teknologi B Dato 31/3/2014 Forord Under

Læs mere

Vejledning til ledelsestilsyn

Vejledning til ledelsestilsyn Vejledning til ledelsestilsyn Ledelsestilsynet er et væsentligt element i den lokale opfølgning og kan, hvis det tilrettelægges med fokus derpå, være et redskab til at sikre og udvikle kvaliteten i sagsbehandlingen.

Læs mere

Energitekniske grundfag 5 ECTS

Energitekniske grundfag 5 ECTS Energitekniske grundfag 5 ECTS Kursusplan 1. Jeg har valgt energistudiet. Hvad er det for noget? 2. Elektro-magnetiske grundbegreber 3. The Engineering Practice 4. Elektro-magnetiske grundbegreber 5. Termodynamiske

Læs mere

Matematik Eksamensprojekt

Matematik Eksamensprojekt Matematik Eksamensprojekt Casper Wandrup Andresen, 2.F I dette projekt arbejdes der bl.a. med parabler, vektorer, funktioner, sinus, cosinus, tangens, differentialregning, integralregning samt de øvrige/resterende

Læs mere

DesignMat Egenværdier og Egenvektorer

DesignMat Egenværdier og Egenvektorer DesignMat Egenværdier og Egenvektorer Preben Alsholm September 008 1 Egenværdier og Egenvektorer 1.1 Definition og Eksempel 1 Definition og Eksempel 1 Lad V være et vektorrum over L (enten R eller C).

Læs mere

Elektron- og lysdiffraktion

Elektron- og lysdiffraktion Elektron- og lysdiffraktion Fysik 8: Kvantemekanik II Joachim Mortensen, Michael Olsen, Edin Ikanović, Nadja Frydenlund 19. marts 2009 1 Elektron-diffraktion 1.1 Indledning og kort teori Formålet med denne

Læs mere