Noter om kombinatorik, Kirsten Rosenkilde, februar Kombinatorik
|
|
|
- Egil Thøgersen
- 10 år siden
- Visninger:
Transkript
1 Noter om ombiatori, Kirste Roseilde, februar 008 Kombiatori Disse oter er e itrodutio til ombiatori og starter helt fra bude, så e del af det idledede er siert edt for dig allerede, me der ommer også hurtigt sværere opgaver Kombiatioer Multipliatiospricippet Ved et valg der består af forsellige delvalg med heholdsvis m, m,, m valgmuligheder, er der i alt m m m valgmuligheder Esempel Når ma fx sal udfylde e tipsupo, sal ma træffe 3 valg da ma sal sætte 3 rydser, et i hver ræe I hver ræe er der 3 muligheder for at sætte et ryds, dvs ma a udfylde e tipsupo på måder 3 Esempel Ma a også bruge multipliatiospricippet til at bestemme hvor mage forsellige delmægder der fides af e mægde med elemeter Når ma sal udtage e delmægde, sal ma for hvert elemet afgøre om det sal med eller ie med, der er altså to muligheder for hvert elemet Derfor er der forsellige delmægder af e mægde med elemeter Her er både de tomme mægde og mægde selv talt med 4 Opgave Tallee fra til 00 sal fordeles i tre disjute delmægder således at ige af mægdere er tomme, og ige mægde ideholder to på hiade følgede tal At to mægder er disjute betyder at de ie har oge elemeter tilfælles På hvor mage måder a det gøres? 5 Esempel Til et stæve er der 4 hold der æmper om guld, sølv og broze Når ma sal bestemme på hvor mage forsellige måder medaljere a fordeles, har ma 4 muligheder for at uddele guld, 3 for sølv og for broze, dvs der er i alt 4 3 måder at fordele medaljere på I oveståede esempel sulle ma udtage tre hold ud af 4 hvor ræefølge havde betydig Geerelt hvis ma sal udtage r ud af elemeter således at ræefølge af de r elemeter har betydig, a ma gøre det på måder r r!
2 Noter om ombiatori, Kirste Roseilde, februar Sætig Symbolet r beteger atallet af måder hvorpå ma a udtage r elemeter ud af ude hesytage til ræefølge af de elemeter ma udtager Altså atallet af måder hvorpå ma a udtage e delmægde med r elemeter ud af e mægde med elemeter Der gælder at r r! r! Nogle beytter betegelse K, r i stedet for r Bemær at 0! per defiitio, og at formle derfor også gælder for r 0 I første omgag huser vi på at ma a udtage r elemeter i ræefølge på r! måder Desude a r elemeter ordes i r! forsellige ræefølger, dvs hver delmægde er talt med r! gage, hvis vi udtager de r elemeter i ræefølge Derfor er r! r r! r! r! 7 Esempel Sætige a bruges i et utal af sammehæge, år ma sal afgøre på hvor mage måder ma a udvælge oget Fx a de syv vidertal i lotto, år der er 36 tal at vælge imellem, udtræes på forsellige måder 8 Esempel Ma a også bruge sætige til at udrege på hvor mage måder ma a udtage syv ort af et sæt almidelige spilleort med 5 ort, således at ma etop har et par, altså to ort med samme talværdi og fem ort med fem adre talværdier Der er 3 forsellige talværdier, dvs vi a udvælge de talværdi parret har, på 3 3 måder Desude a vi vælge de fem talværdier de fem sidste ort sal have, på 5 79 måder For hver talværdi er der fire ort, dvs vi u a vælge de to ort der idgår i vores par, på 4 6 måder Desude a vi vælge hvert af de fem adre ort på 4 4 måder I alt er der altså ifølge multipliatiospricippet måder at udtage syv ort på, så ma etop har et par 9 Opgave Bestem på hvor mage måder ma a udtage ses ort fra et sæt spilleort, således at ma etop har to par 0 Esempel På et sabræt med 8 8 felter ravler e myre fra det ee hjøre til det diagoalt modsatte hjøre De ravler u på stregere mellem feltere eller lags ate af brættet, og de sørger for at ture bliver så ort så mulig Vi sal u rege ud hvor mage forsellige
3 Noter om ombiatori, Kirste Roseilde, februar ruter myre a vælge Først bemærer vi at de samlet sal gå otte felter op og otte felter til højre, hvis vi forestiller os at de starter i ederste vestre hjøre De sal med adre ord vælge præcis hvile otte af de 6 sridt der sal være lodrette, dvs de har forsellige ruter at vælge imellem Opgave I e by har ma et cetrum der u består af veje der går ord-syd og øst-vest Der er syv veje ord-syd og fem veje øst-vest, me pga vejarbejde er vejrydset mellem de midterste vej ord-syd og de midterste vej øst-vest totalt spærret så ma ie a passere fra e af de fire veje rydset består af, til e af de adre Joata står i det sydvestlige hjøre af cetrum og sal til det ordøstlige hjøre, og ha øser at gå så ort så muligt Hvor mage forsellige ruter a ha vælge imellem? Opgave Der sal bygges 5 byer på 3 øer, midst e på hver Desude sal der etableres færgeforbidelser mellem hvert par af byer på forsellige øer Bestem det midst mulige atal færgeforbidelser BW994 3 Opgave I e oves -polygo idteges samtlige diagoaler, og det atages at der ie fides tre diagoaler som særer hiade i samme put Polygoes sider er ie diagoaler a Bestem atallet af særigsputer mellem diagoaler b Bestem atallet af dele som diagoalere deler polygoe i c Bestem atallet af treater der opstår Altså treater hvis hjører er polygoes hjører eller e særig mellem to diagoaler Pascals treat og regig med biomialoefficieter Biomialoefficietere r viser sig at ue frembriges på e iteressat måde, og for at vise dette har vi behov for følgede formel Sætig Der gælder at Hvis ma sal udtage + elemeter ud af +, a ma ete udtage + ud af de første af de + elemeter, eller ma a udtage elemeter bladt de første samt udtage det sidste ud af de + elemeter Dermed er
4 Noter om ombiatori, Kirste Roseilde, februar Bemær at ma år frem til lighedsteget ved at tælle det samme på to forsellige måder; dette er et meget avedeligt tric Alterativt a ma også blot rege, me det er ie helt så elegat: + +! + +!! +!! +! +! +!! + + Pascals treat + + Biomialoefficietere a derfor opstilles i det ma alder Pascals treat således at e biomialoefficiet hele tide er summe af de to ovefor: Sætig Der gælder at + x 0 x Når ma gager + x ud, får ma etop x ved at gage x et fra af paretesere med -tallere fra reste Dette a ma gøre på måder 4 Biomialformle Der gælder at Ifølge sætig 3 er i0 + i i0 i Alterativt a ma beytte tricet med at tælle det samme på to forsellige måder, da begge sider af lighedsteget agiver atallet af delmægder af e mægde med elemeter Vi har tidligere set at der fides etop delmægder af e mægde med elemeter Ma a også tælle delmægdere ved at summere atal delmægder med 0,, op til elemeter, og det er etop det der står på højreside 5 Opgave Vis at 0 + 0
5 Noter om ombiatori, Kirste Roseilde, februar Opgave Lad P x + x + x + x Vis at + x P x P for alle reelle tal x og alle aturlige tal BW998 Hit: Udyt at xp x x 3 Flere ombiatioer At vælge r elemeter ud af svarer til at splitte de elemeter op i to buer: e med r elemeter og e med r elemeter Nogle gage har ma imidlertid brug for at fordele de elemeter i mage flere buer 3 Sætig Symbolet r,r,,r m beteger atallet af måder hvorpå ma a dele e mægde med elemeter i m disjute delmægder A, A,, A m med heholdsvis r, r,, r m elemeter i hver delmægde, således at r + r + + r m Der gælder at r, r,, r m r!r! r m! Vi viser sætige ved idutio efter m Hvis m, følger det af sætig 6 Atag at sætige er sad for m, og vi øser at vise at sætige er sad for m disjute delmægder med heholdsvis r, r,, r m elemeter i hver Atal måder hvorpå ma a dele mægde i m disjute delmægder med r, r,, r m, r m + r m elemeter i hver, er ifølge idutiosatagelse r, r,, r m, r m + r m r!r! r m!r m + r m! Desude a delmægde A m med r m +r m elemeter deles i to disjute delmægder med heholdsvis r m og r m elemeter på r m +r m r m,r m r m +r m! r m!r m! måder Ifølge multipliatiospricippet får vi u r m + r m! r, r,, r m r!r! r m!r m + r m! r m!r m! r!r! r m! 3 Esempel E lasse med elever sal deles i tre grupper med fire i hver På hvor mage måder a dette gøres? Hvis gruppere beteges A, B og C, a de tolv elever ifølge sætige fordeles i gruppere A, B og C med 4 i hver på 4,4, måder Me i spørgsmålet havde de tre grupper ige betegelse og var altså ie ordede, dvs vi har talt hver ombiatio med 3! 6 gage Der er dermed måder at dele lasse på
6 Noter om ombiatori, Kirste Roseilde, februar Opgave E ube er sammesat af små ehedsuber På hvor mage måder a ma omme fra det ee hjøre til det diagoalt modsatte hjøre, år ma u må gå lags atere af ehedsubere og sal vælge e rute der er så ort så mulig? 4 Reursio I stedet for at fide e formel for atal ombiatioer ud fra e eller ade parameter, a ma bestemme atallet af ombiatioer reursivt dvs at ma a besrive hvor mage ombiatioer der er for et givet, ud fra atallet af ombiatioer for og måse yderligere for Ma a sige at reursio går ud på at ma udtryer det -te tal af fx e talræe ved hjælp af ogle af de foregåede tal Fx er Fiboacci-tallee,,, 3, 5, 8, 3, besrevet reursivt da det æste tal i ræe etop er summe af de to foregåede 4 Esempel Peter sal gå op ad e trappe med tri I hvert sridt går ha ete et eller to tri op På hvor mage forsellige måder a ha gå op ad trappe? Dette problem a løses ved reursio Lad A betege atal ombiatioer ved e trappe med tri Det er emt at idse at A og A Det sidste sridt a ete bestå af et eller to tri Hvis trappe har tri, må der være A ombiatioer der eder med et sridt på et tri, da der er A forsellige måder at å det æstsidste tri på Tilsvarede er der A ombiatioer som afsluttes med et sridt på to tri Dermed er A A + A ligesom for Fiboaccitallee, og ma a gå op ad e trappe på tri på 33 forsellige måder 4 Opgave Peter sal gå op ad e trappe med tri, me tager dee gag både sridt af et, to og tre tri På hvor mage forsellige måder a Peter gå op ad trappe? 43 Opgave E iteressat delmægde af mægde M {,,, }, hvor er et ulige tal, er e delmægde som for hvert lige tal de ideholder, også ideholder de to ulige abotal Hvor mage iteressate delmægder fides der af M 3? 5 Sadsyligheder Kombiatori bruges også ofte i sadsylighedsregig Hvis ma fx øser at berege sadsylighede for at få syv rigtige i lotto med 36 tal, er der u e af de ombiatioer af 7 forsellige tal som udtræes, dvs sadsylighede for at få syv rigtige er Opgave da alle ombiatioer er lige sadsylige I e sål er der fem røde bolde, tre blå og to grøe Hvad er sadsylighede for at der er e rød, blå og e grø bold tilbage i såle, hvis ma fjerer syv tilfældige bolde?
7 Noter om ombiatori, Kirste Roseilde, februar Opgave I e papasse ligger et stort atal løse soer Nogle af soere er røde; de øvrige er blå Det oplyses at det samlede atal soer ie overstiger 993 Edvidere oplyses det at sadsylighede for at træe to soer af samme farve, år ma på tilfældig måde udtræer to soer fra asse, er Hvad er efter de foreliggede oplysiger det største atal røde soer der a befide sig i asse? GM993
Noter om kombinatorik, Kirsten Rosenkilde, februar Kombinatorik
Noter om ombiatori, Kirste Roseilde, februar 008 Kombiatori Disse oter er e itrodutio til ombiatori og starter helt fra bude, så e del af det idledede er siert edt for dig allerede, me der ommer også hurtigt
Noter om kombinatorik, Kirsten Rosenkilde, Marts Kombinatorik
Noter om kombinatorik, Kirsten Rosenkilde, Marts 006 Kombinatorik Disse noter er en introduktion til kombinatorik og starter helt fra bunden, så en del af det indledende er sikkert kendt for dig allerede
Introduktion til uligheder
Itroduktio til uligheder, marts 0, Kirste Rosekilde Itroduktio til uligheder Dette er e itroduktio til ogle basale uligheder om det aritmetiske geemsit, det geometriske geemsit, det harmoiske geemsit og
Introduktion til uligheder
Itroduktio til uligheder Dette er e itroduktio til ogle basale uligheder om det aritmetiske geemsit, det geometriske geemsit, det harmoiske geemsit og det kvadratiske geemsit. Først skal vi ved fælles
Matematik A. Studentereksamen. Forberedelsesmateriale. Forsøg med digitale eksamensopgaver med adgang til internettet.
Matematik A Studetereksame Forsøg med digitale eksamesopgaver med adgag til iterettet Forberedelsesmateriale Vejledede opgave Forår 0 til stx-a-net MATEMATIK Der skal afsættes 6 timer af holdets sædvalige
Løsningsforslag til skriftlig eksamen i Kombinatorik, sandsynlighed og randomiserede algoritmer (DM528)
Løsigsforslag til skriftlig eksame i Kombiatorik, sadsylighed og radomiserede algoritmer (DM58) Istitut for Matematik & Datalogi Syddask Uiversitet Madag de 3 Jauar 011, kl. 9 13 Alle sædvalige hjælpemidler
Elementær Matematik. Polynomier
Elemetær Matematik Polyomier Ole Witt-Hase 2008 Køge Gymasium Idhold 1. Geerelle polyomier...1 2. Divisio med hele tal....1 3. Polyomiers divisio...2 4. Polyomiers rødder....4 5. Bestemmelse af røddere
Noter om polynomier, Kirsten Rosenkilde, Marts Polynomier
Noter om polyomier, Kirste Rosekilde, Marts 2006 1 Polyomier Disse oter giver e kort itroduktio til polyomier, og de fleste sætiger æves ude bevis. Udervejs er der forholdsvis emme opgaver, mes der til
og Fermats lille sætning
Projekter: Kaitel 0. Projekt 0. Modulo-regig, restklassegruer og Fermats lille sætig Projekt 0. Modulo-regig, restklassegruere ( { 0 }, ) og Fermats lille sætig Vi aveder moduloregig og restklasser mage
og Fermats lille Projekt 0.4 Modulo-regning, restklassegrupperne sætning ..., 44, 20,4,28,52,... Hvad er matematik? 3 ISBN
Projekt 0.4 Modulo-regig, restklassegruppere sætig ( p 0, ) og Fermats lille Vi aveder moduloregig og restklasser mage gage om dage, emlig år vi taler om tid, om hvad klokke er, om hvor lag tid der er
6 Populære fordelinger
6 Populære fordeliger I apitel 4 itroducerede vi stoastise variabler so e åde at repræsetere udfald af et esperiet på. De stoastise variabler ue være både disrete (fx terigslag) og otiuerte (fx vareægder).
TEKST NR 435 2004. TEKSTER fra IMFUFA
TEKST NR 435 2004 Basisstatisti 2. udgave Jørge Larse August 2006 TEKSTER fra IMFUFA INSTITUT ROSKILDE UNIVERSITETSCENTER FOR STUDIET AF MATEMATIK OG FYSIK SAMT DERES FUNKTIONER I UNDERVISNING, FORSKNING
DATV: Introduktion til optimering og operationsanalyse, 2007. Følsomhed af Knapsack Problemet
DATV: Itroduktio til optimerig og operatiosaalyse, 2007 Følsomhed af Kapsack Problemet David Pisiger, Projektopgave 1 Dette er de første obligatoriske projektopgave på kurset DATV: Itroduktio til optimerig
Formelskrivning i Word 2. Sådan kommer du i gang 4. Eksempel med skrivning af brøker 5. Brøker skrevet med småt 6. Hævet og sænket skrift 6
Dee udgave er til geemkig på ettet. Boge ka købes for kr. 5 hos EH-Mat. E y og udvidet udgave med title»symbol- og formelskrivig«er udkommet september 00. Se mere om de her. Idholdsfortegelse Formelskrivig
Vejledende besvarelser til opgaver i kapitel 15
Vejledede besvarelser til opgaver i apitel 5 Opgave a) De teststatistier, ma aveder til at teste om to middelværdier er es, består af et estimat på forselle mellem middelværdiere,, divideret med et udtry
Forslag til besvarelser af opgaver m.m. i ε-bogen, Matematik for lærerstuderende
Forslag til besvarelser af opgaver m.m. i ε-boge, Matematik for lærerstuderede Dette er førsteudgave af opgavebesvarelser udarbejdet i sommere 008. Dokumetet ideholder forslag til besvarelser af de fleste
Gamle eksamensopgaver. Diskret Matematik med Anvendelser (DM72) & Diskrete Strukturer(DM504)
Gamle eksamesopgaver Diskret Matematik med Avedelser (DM72) & Diskrete Strukturer(DM504) Istitut for Matematik& Datalogi Syddask Uiversitet, Odese Alle sædvalige hjælpemidler(lærebøger, otater etc.), samt
Projekt 2.3 Det gyldne snit og Fibonaccitallene
Projekter: Kapitel Projekt.3 Det glde sit og Fiboaccitallee Forslag til hvorda klasses arbejde med projektet ka tilrettelægges: Forløbet:. Præsetatio af emet med vægt på det glde sit.. Grppere arbejder
9. Binomialfordelingen
9. Biomialfordelige 9.. Gekedelse Hvert forsøg ka ku resultere i to mulige udfald; succes og fiasko. I modsætig til poissofordelige er atallet af forsøg edeligt. 9.. Model X : Stokastisk variabel, der
Projekt 9.1 Regneregler for stokastiske variable middelværdi, varians og spredning
Hvad er matematik? Projekter: Kaitel 9 Projekt 9 Regeregler for stokastiske variable middelværdi, varias og sredig Projekt 9 Regeregler for stokastiske variable middelværdi, varias og sredig Sætig : Regeregler
De reelle tal. Morten Grud Rasmussen 5. november Se Sætning 3.6 og 3.7 for forskellige formuleringer af egenskaben og dens negation.
De reelle tal Morte Grud Rasmusse 5. ovember 2015 Ordede mægder Defiitio 3.1 (Ordet mægde). pm, ăq kaldes e ordet mægde såfremt: For alle x, y P M gælder etop ét af følgede: x ă y, x y, y ă x @x, y, z
Matematikkens mysterier - på et obligatorisk niveau. 7. Ligninger, polynomier og asymptoter
Matematikkes mysterier - på et obligatorisk iveau af Keeth Hase 7. Ligiger, polyomier og asymptoter Hvad er e asymotote? Og hvorda fides de? 7. Ligiger, polyomier og asymptoter Idhold 7.0 Idledig 7.1 Udsag
Lys og gitterligningen
Fysik rapport: Lys og gitterligige Forfatter: Bastia Emil Jørgese.z Øvelse blev udført osdag de 25. jauar 202 samme med Lise Kjærgaard Paulse 2 - Bastia Emil Jørgese Fysik rapport (4 elevtimer), februar
Differentiation af potensfunktioner
Hvd er mtemti? B, i-bog ISBN 978 87 766 494 3 Hjemmesideevisig: Differetitio f potesfutioer, Kpitel 4, side 76 Differetitio f potesfutioer. Pscls tret og biomilformle Vi strter med t mide om t poteser
Meningsmålinger KLADDE. Thomas Heide-Jørgensen, Rosborg Gymnasium & HF, 2017
Meigsmåliger KLADDE Thomas Heide-Jørgese, Rosborg Gymasium & HF, 2017 Idhold 1 Meigsmåliger 2 1.1 Idledig................................. 2 1.2 Hvorda skal usikkerhede forstås?................... 3 1.3
DATV: Introduktion til optimering og operationsanalyse, 2007. Bin Packing Problemet
DATV: Itroduktio til optimerig og operatiosaalyse, 2007 Bi Packig Problemet David Pisiger, Projektopgave 2 Dette er de ade obligatoriske projektopgave på kurset DATV: Itroduktio til optimerig og operatiosaalyse.
Renteformlen. Erik Vestergaard
Reteformle Erik Vestergaard 2 Erik Vestergaard www.matematikfysik.dk Erik Vestergaard, 2010. Billeder: Forside: istock.com/ilbusca Side 4: istock.com/adresrimagig Desude ege illustratioer. Erik Vestergaard
hvor i er observationsnummeret, som løber fra 1 til stikprøvestørrelsen n, X i
Normalfordeliger For at e stokastisk variabel X ka være ormalfordelt, skal X agive værdie af e eller ade målig, f.eks. tid, lægde, vægt, beløb osv. Notatioe er: Xi ~ N( μ, σ hvor i er observatiosummeret,
De Platoniske legemer De fem regulære polyeder
De Platoiske legemer De fem regulære polyeder Ole Witt-Hase jauar 7 Idhold. Polygoer.... Nogle topologiske betragtiger.... Eulers polyedersætig.... Typer af et på e kugleflade.... Toplasvikle i e regulær
Projekt 1.3 Brydningsloven
Projekt 1.3 Brydigslove Når e bølge, fx e lysbølge, rammer e græseflade mellem to stoffer, vil bølge ormalt blive spaltet i to: Noget af bølge kastes tilbage (spejlig), hvor udfaldsvikle u er de samme
Hvis man vil lægge 15% til 600, så kan det gøres ved at udregne, hvor meget 15% af 600 er lig med og lægge det til det oprindelige beløb:
0BRetesegig BTæk i femskivigsfaktoe! I dette tillæg skal vi se, at begebet femskivigsfaktoe e yttigt til at fostå og løse foskellige poblemstillige idefo pocet- og etesegig. 3B. Lægge pocet til elle tække
FUNKTIONER del 1 Funktionsbegrebet Lineære funktioner Eksponentialfunktioner Logaritmefunktioner Rentesregning Indekstal
FUNKTIONER del Fuktiosbegrebet Lieære fuktioer Ekspoetialfuktioer Logaritmefuktioer Retesregig Idekstal -klassere Gammel Hellerup Gymasium November 08 ; Michael Szymaski ; [email protected] Idholdsfortegelse FUNKTIONSBEGREBET...
x-klasserne Gammel Hellerup Gymnasium
SANDSYNLIGHEDSREGNING OG KOMBINATORIK x-klassere Gammel Hellerup Gymasium Idholdsfortegelse SANDSYNLIGHEDSREGNING... 3 SANDSYNLIGHEDSFELT... 3 DE STORE TALS LOV... 4 Sadsyligheder og frekveser:... 4 STOKASTISK
KOMPLEKSE TAL x-klasserne Gammel Hellerup Gymnasium
KOMPLEKSE TAL x-klassere Gammel Hellerup Gymasium Februar 09 ; Michael Symaski ; [email protected] Idholdsfortegelse E kort historie om imagiært og virkeligt... Tallegemet De Komplekse Tal... Idførelse af realdel
Projekt 3.2 Anlægsøkonomien i Storebæltsforbindelsen. Indhold. Hvad er matematik? 1 ISBN
Projekt 3.2 Alægsøkoomie i Storebæltsforbidelse Dette projekt hadler, hvorda økoomie var skruet samme, da ma byggede storebæltsforbidelse. Store alægsprojekter er æste altid helt eller delvist låefiasieret.
Projekt 9.10 St. Petersborg paradokset
Hvad er matematik? ISBN 978877066879 Projekt 9.0 St. Petersborg paradokset. De store tals lov & viderchacer I grudboges kapitel 9 omtales de store tals lov, som ka formuleres således: Hvis e spiller i
- et værktøj til fejlrettende QR-koder. Projekt 0.3 Galois-legemerne. Indhold. Hvad er matematik? A, i-bog
Projekt 0.3 Galois-legemere GF é ëp û - et værktøj til fejlrettede QR-koder Idhold De karakteristiske egeskaber ved de tre mest almidelige talsystemer, og... De kommutative, associative og distributive
Sprednings problemer. David Pisinger
Spredigs problemer David Pisiger 2001 Idledig Jukfood A/S er e amerikask kæde af familierestaurater der etop er ved at etablere sig i Damark. E massiv reklamekampage med de to slogas vores fritter er de
KOMPLEKSE TAL x-klasserne Gammel Hellerup Gymnasium
KOMPLEKSE TAL x-klassere Gammel Hellerup Gymasium Idholdsfortegelse E kort historie om imagiært og virkeligt... Tallegemet De Komplekse Tal... Idførelse af realdel og imagiærdel samt i... 8 Subtraktio,
Sandsynlighedsregning i biologi
Om begrebet sadsylighed Sadsylighedsregig i biologi Hvis vi kaster e almidelig, symmetrisk terig, er det klart for de fleste af os, hvad vi meer, år vi siger, at sadsylighede for at få e femmer er 1/6.
Den flerdimensionale normalfordeling
De flerdimesioale ormalfordelig Stokastiske vektorer Ved e stokastisk vektor skal vi forstå e vektor, hvor de ekelte kompoeter er sædvalige stokastiske variable. For de stokastiske vektor Y = Y,..., Y
Kvadratisk 0-1 programmering. David Pisinger
Kvadratisk - programmerig David Pisiger 27-8 MAX-CUT problemet Givet e ikke-orieteret graf G = (V, E) er MAX-CUT problemet defieret som MAX-CUT = {< G > : fid et sit S, T i grafe G som maksimerer atal
Motivation. En tegning
Motivatio Scatter-plot at det mådelige salg mod det måedlige reklamebudget. R: plot(salg ~ budget, data = salg) Økoometri Lektio Simpel Lieær Regressio salg 400 450 500 550 20 25 30 35 40 45 50 budget
Projekt 4.8 De reelle tal og 1. hovedsætning om kontinuerte funktioner
Projekter: Kapitel 4 Projekt 48 De reelle tal og hovedsætig om kotiuerte fuktioer Projekt 48 De reelle tal og hovedsætig om kotiuerte fuktioer Kotiuitet og kotiuerte fuktioer Ord som kotiuert og kotiuerlig
Claus Munk. kap. 1-3
Claus Muk kap. 1-3 1 Dages forelæsig Grudlæggede itroduktio til obligatioer Betaligsrækker og låeformer Det daske obligatiosmarked Pris og kurs Effektive reter 2 1 Obligatioer Grudlæggede Itro Debitor
Dagens forelæsning. Claus Munk. kap. 1-3. Obligationer Grundlæggende Intro. Obligationer Grundlæggende Intro. Obligationer Grundlæggende Intro
Dages forelæsig Grudlæggede itroduktio til obligatioer Claus Muk kap. - 3 Betaligsrækker og låeformer Det daske obligatiosmarked Effektive reter 2 Obligatioer Grudlæggede Itro Obligatioer Grudlæggede Itro
Projekt 0.4 Modulo-regning, restklassegrupperne ( lille sætning. {} 0, ) og Fermats { } ...,-44,-20,4,28,52,...
Projekter: Kaitel 0. Projekt 0. Modulo-regig, restklassegruer og Fermats lille sætig Projekt 0. Modulo-regig, restklassegruere ( {} 0, ) og Fermats lille sætig Vi aveder moduloregig og restklasser mage
Talfølger og -rækker
Da Beltoft og Klaus Thomse Aarhus Uiversitet 2009 Talfølger og -rækker Itroduktio til Matematisk Aalyse Zeos paradoks om Achilleus og skildpadde Achilleus løber om kap med e skildpadde. Achilleus løber
Bjørn Grøn. Analysens grundlag
Bjør Grø Aalyses grudlag Aalyses grudlag Side af 4 Idholdsfortegelse Kotiuerte og differetiable fuktioer 3 Differetial- og itegralregiges udviklig 5 3 Hovedsætiger om differetiable fuktioer 8 Opgaver til
x-klasserne Gammel Hellerup Gymnasium
SANDSYNLIGHEDSREGNING OG KOMBINATORIK x-klassere Gammel Hellerup Gymasum Idholdsfortegelse SANDSYNLIGHEDSREGNING... 3 Sadsylghedsfelt... 3 Edelge sadsylghedsfelter (sadsylghedsfordelger):... 3 Uedelge
Situationen er illustreret på figuren nedenfor. Her er også afsat nogle eksempler: Punktet på α giver anledning til punktet Q
3, 45926535 8979323846 2643383279 50288497 693993750 5820974944 592307864 0628620899 8628034825 34270679 82480865 3282306647 0938446095 505822372 535940828 4874502 84027093 85205559 6446229489 549303896
Definition: Normalfordelingen. siges at være normalfordelt med middelværdi µ og varians σ 2, hvor µ og σ er reelle tal og σ > 0.
Repetitio: Normalfordelige Ladmåliges fejlteori Lektio Trasformatio af stokastiske variable - [email protected] http://people.math.aau.dk/ kkb/udervisig/lf13 Istitut for Matematiske Fag Aalborg Uiversitet
1. De karakteristiske egenskaber ved de tre mest almindelige talsystemer, og... 2
Projekt 0.3 Galois-legemere GF p - et værktøj til fejlrettede QR-koder Idhold. De karakteristiske egeskaber ved de tre mest almidelige talsystemer, og.... De kommutative, associative og distributive lov
Rettevejledning til HJEMMEOPGAVE 1 Makro 1, 2. årsprøve, foråret 2007 Peter Birch Sørensen
Rettevejledig til HJEMMEOPGAVE Makro, 2. årsprøve, foråret 2007 Peter Birch Sørese Opgave... Udsaget er forkert. De omtalte skatteomlægig må atages at øge beskæftigelse p.gr.a. e positiv substitutioseffekt
Cykelfysik. Om udveksling og kraftoverførsel
Cykelfysik 1/7 Cykelfysik Om udvekslig og kaftoveføsel Idhold 2. Kaftoveføsel og abejde...2 3. Abejde ved cykelkøsel...4 4. Regeeksemple fo e acecykel...5 5. Det e hådt at køe op ad bakke...6 6. Simple
Introduktion til optimering og operationsanalyse. Asymmetric Traveling Salesman Problem
Itroduktio til optimerig og operatiosaalyse Asymmetric Travelig Salesma Problem David Pisiger, Efterår 2003 Dette er de ade obligatoriske projektopgave på kurset Itroduktio til optimerig og operatiosaalyse.
Estimation og test i normalfordelingen
af Birger Stjerholm Made Samfudlitteratur 07 Etimatio og tet i ormalfordelige Dee tekt ideholder et overblik over ogle grudlæggede pricipper for etimatio og tet i ormalfordelige i hyppigt forekommede ituatioer:
Georg Mohr Konkurrencen Noter om uligheder. Søren Galatius Smith
Georg Mohr Kokurrece Noter om uligheder Søre Galatius Smith. juli 2000 Resumé Kapitel geemgår visse metoder fra gymasiepesum, som ka bruges til at løse ulighedsopgaver, og ideholder ikke egetligt yt stof.
Estimation ved momentmetoden. Estimation af middelværdiparameter
Statistik og Sadsylighedsregig 1 STAT kapitel 4.2 4.3 Susae Ditlevse Istitut for Matematiske Fag Email: [email protected] http://math.ku.dk/ susae Estimatio ved mometmetode Idimellem ka det være svært (eller
Sandsynlighedsregning
Sadsylighedsregig E ote om sadsylighedsregig. Via basal sadsylighedsregig gøres læsere klar til forstå biomialfordelige. Herik S. Hase, Sct. Kud Versio 5.0 Opgaver til hæftet ka hetes her. PDF Facit til
Praktisk info. Statistisk analyse af en enkelt stikprøve: kendt eller ukendt varians Sandsynlighedsregning og Statistik (SaSt) I tirsdags.
Praktisk ifo Liste med rettelser og meigsforstyrrede trykfejl i DS på Absalo. Statistisk aalyse af e ekelt stikprøve: kedt eller ukedt varias Sadsylighedsregig og Statistik (SaSt) Helle Sørese Projekt
Bogstavregning - supplerende eksempler. Reduktion... 54 b Ligninger... 54 d
Mtetik på AVU Eksepler til iveu F, E og D Bogstvregig - supplerede eksepler Reduktio... Ligiger... d Bogstvregig Side Mtetik på AVU Eksepler til iveu F, E og D Reduktio M gger to preteser ed hide ved -
Begreber og definitioner
Begreber og defiitioer Daske husstades forbrug på de medierelaterede udgiftsposter stiger og udgør i 2012*) 11,3 % af husstadees samlede forbrug mod 5,5 % i 1994. For husstade med de laveste idkomster
Induktionsbevis og sum af række side 1/7
Iduktosbevs og sum af række sde /7 Skrver ma,,,...,,..., =, 2, 3,... 2 3 taler ma om e talfølge, eller blot e følge. Adre eksempler på følger er, -,, -,, -,..., (-) +,..., =, 2, 3,..., 2, 3, 4,...,,...,
Komplekse tal Matematik og naturfag i verdensklasse, 2004. Komplekse tal
Komplekse tl Mtemtik og turfg i verdesklsse, 004 Komplekse tl Dette mterile er ereget til udervisig i mtemtik i gymsiet. Der forudsættes kedsk til løsig f degrdsligiger, trigoometri og e lille smule vektorregig.
Elementær Matematik. Sandsynlighedsregning
lemetær Matematk Sadsylghedsregg Ole Wtt-Hase Køge Gymasum 008 INDHOLD KAP. KOMBINATORIK.... MULTIPLIKATIONS- OG ADDTIONSPRINCIPPT.... PRMUTATIONR... 3. KOMBINATIONR...3 KAP. NDLIGT SANDSYNLIGHDSFLT...7.
Lidt Om Fibonacci tal
Lidt om Fioi tl Lidt Om Fioi tl Idhold. Defiitio f Fioi tllee.... Kivl... 3. Telefokæder....3 4. E formel for Fioi tllee...4 Ole Witt-Hse 008 Lidt om Fioi tl. Defiitio f Fioi tllee Fioi tllee er opkldt
Maja Tarp AARHUS UNIVERSITET
AARHUS UNIVERSITET Maja Tarp AARHUS UNIVERSITET HVEM ER JEG? Maja Tarp, 4 år Folkeskole i Ulsted i Nordjyllad Studet år 005 fra Droiglud Gymasium Efter gymasiet: Militæret Australie Startede på matematik
1 Punkt- og intervalestimation Punktestimatorer: Centralitet(bias) og efficiens... 2
Idhold 1 Pukt- og itervalestimatio 2 1.1 Puktestimatorer: Cetralitet(bias) og efficies.................... 2 2 Kofidesiterval 3 2.1 Kofidesiterval for adel................................ 4 2.2 Kofidesiterval
Statistik Lektion 8. Parrede test Test for forskel i andele Test for ens varians Gensyn med flyskræk!
Statistik Lektio 8 Parrede test Test for forskel i adele Test for es varias Gesy med flyskræk! Afhægige og uafhægige stikprøver Ved e uafhægig stikprøve udtages e stikprøve fra hver gruppe.. Mæd og kviders
