MPH specialmodul i biostatistik og epidemiologi SAS-øvelser vedr. case-control studie af malignt melanom.
|
|
|
- Johanne Kronborg
- 10 år siden
- Visninger:
Transkript
1 MPH specialmodul i biostatistik og epidemiologi SAS-øvelser vedr. case-control studie af malignt melanom. For at I skal kunne regne på tallene fra undersøgelsen har vi taget en delmængde af variablene fra undersøgelsen ud, som findes i filen melanom.txt på kursushjemmesiden. casecon case-kontrol status: 1:case, 0:kontrol sex køn: 1:mand, 2:kvinde brevald alder ved interview i år agr grupperet alder: 10:10 19, 20:20 29,... hudfarve hudfarve: 0:mørk, 1:medium, 2:lys hair hårfarve: 0:mørkebrun/sort, 1:lys brun, 2:blond, 3:rød eyes øjenfarve: 0:brun, 1:grå,grøn, 2:blå fregner fregner: 1:mange, 2:nogen, 3:ingen akutrea akut reaktion på sol: 1:vabler, 2:alvorlig solskoldning, 3:mild solskoldning, 4:ingen solskoldning kronrea solbrændthed ved soleksponering: 1:stærk, 2:moderat, 3:mild, 4:ingen nvsmall antal naevi < 5mm nvlarge antal naevi 5mm nvtot totalt antal naevi ant15 antal solskoldninger før 15 års alderen 1
2 I filen er der 1 linie for hver person i studiet, og første linie indeholder variabelnavnene beskrevet ovenfor. Visse variable har manglende værdier, som er angivet ved.. Øvelse 1. Indlæs filen i SAS (evt. ved hjælp af programmet melanom.sas), lav en krydstabel af casecontrol status over for hudfarve og test om der er forskellig risiko i de 3 kategorier af hudfarve. Øvelse 2. Da SAS PROC FREQ kun kan beregne odds ratio i 2 2 tabeller, må man mase lidt for at få estimeret disse for kategorierne lys og medium over for mørk. En mulighed er at at lave to nye variable ud fra hudfarve: en hvor alle med hudfarve=medium sættes til missing og en, hvor alle med hudfarve=lys sættes til missing. For hver af disse, kan man estimere OR mht. casecontrol status. Gør det - og sammenlign med AØ s tabel 9. NB: Det er meget enklere at estimere disse ORr ved hjælp af logistisk regression, se Øvelse 5. nedenfor. Øvelse 3. Lav en ny variabel ud fra datafilensnvtot, som er 0, hvisnvtot=0 og 1, hvis nvtot>0. NB - hvis nvtot=., skal den nye variabel også være missing. Estimer OR mht. casecontrol status med og uden stratifikation for fregner og sammenlign resultaterne. Øvelse 4. Lad nvtot og fregner bytte rolle i opgave 4, dvs. lav en ny variabel ud fra fregner med kun to niveauer og estimer OR for denne uden og med stratifikation efter (en passende grupperet udgave af) nvtot. Øvelse 5. Udfør logistisk regressionsanalyse af case-kontrol status med den forklarende variabel hudfarve. Genfind derved estimaterne øverst til venstre i AØ s Tabel 9. NB! Revideret udgave af Tabel 9 og 10 findes nedenfor. Øvelse 6. Udfør de øvrige analyser i AØ s Tabel 9 (venstre del), hvor faktorerne hair, eyes, fregner, akutrea, kronrea studeres en ad gangen. Øvelse 7. Udfør analysen svarende til Tabel 9 (højre del), hvor flere variable er inddraget samtidigt (se tabelteksten). 2
3 Øvelse 8. Rekonstruer resultaterne fra AØ s Tabel 10, som vedrører det totale antal naevi. NB: her må defineres en ny variabel, nynaevi, ud fra datafilens nvtot. Øvelse 9. I de hidtidige analyser er alle variable blevet betragtet som kategoriske variable, mens variablene ved alle tests i Tabel 9 og 10 er betragtet som lineære (såkaldte trend tests ). Prøv at udføre analyserne, der giver P-værdierne for hudfarve og fregner i Tabel 9 (højre del). Øvelse 10. Er det tilladeligt at score fregner lineært (0, 1, 2), når denne variabel studeres separat? (Udfør et test for linearitet). Øvelse 11. I AØ s Tabel 11 analyseres fregner og det totale antal naevi (grupperet passende, nynaevi, som i spm. 9 ovenfor). Undersøg om der er interaktion mellem de to variable. Rekonstruer estimaterne i marginalerne i Tabel 11, dvs. i modellen uden interaktion Resultaterne i det indre af Tabel 11 kan rekonstrueres ved hjælp af modellen: model casecon=fregner*nynaevi 3
4 Corrected Table 9. Factor Category OR (crude) OR (adjusted) Skin colour Dark (1.0) (1.0) Medium 1.4 ( ) 1.3 ( ) Light 1.7 ( ) 1.3 ( ) trend test p < 0.01 p =0.15 Hair colour Dark-brown/black (1.0) (1.0) Light-brown 1.5 ( ) 1.5 ( ) Blond/fair 1.7 ( ) 1.6 ( ) Red 1.7 ( ) 1.3 ( ) p = 0.04 Eye colour Brown (1.0) (1.0) Grey/green 0.9 ( ) 0.7 ( ) Blue 1.1 ( ) 0.9 ( ) trend test p =0.32 p =0.98 Freckles None (1.0) (1.0) Some 1.5 ( ) 1.5 ( ) Many 3.0 ( ) 3.0 ( ) p < Acute reaction No sunburn (1.0) (1.0) to sunlight Mild sunburn 1.3 ( ) 1.1 ( ) Painful sunburn 1.6 ( ) 1.3 ( ) Blisters 2.2 ( ) 1.6 ( ) trend test p =0.005 p =0.15 Chronic reaction Deep tan (1.0) (1.0) to sunlight Moderate tan 1.4 ( ) 1.2 ( ) Mild tan 1.8 ( ) 1.4 ( ) No tan 2.0 ( ) 1.2 ( ) p =0.10 4
5 Corrected Table 10. Factor Category OR (crude) OR (adjusted) Number of raised None (1.0) (1.0) naevi on arms, ( ) 1.5 ( ) total ( ) 2.2 ( ) ( ) 4.9 ( ) Number of raised None (1.0) (1.0) naevi on arms, ( ) 1.6 ( ) < 5mm (diameter) ( ) 2.4 ( ) ( ) 4.7 ( ) Numner of raised None (1.0) (1.0) naevi on arms, ( ) 1.6 ( ) 5mm (diameter) ( ) 2.7 ( ) 5
Epidemiologi og Biostatistik Opgaver i Biostatistik Uge 10: 13. april
Århus 8. april 2011 Morten Frydenberg Epidemiologi og Biostatistik Opgaver i Biostatistik Uge 10: 13. april Opgave 1 ( gruppe 1: sp 1-4, gruppe 5: sp 5-9 og gruppe 6: 10-14) I denne opgaveser vi på et
Lineær og logistisk regression
Faculty of Health Sciences Lineær og logistisk regression Susanne Rosthøj Biostatistisk Afdeling Institut for Folkesundhedsvidenskab Københavns Universitet [email protected] Dagens program Lineær regression
Morten Frydenberg 26. april 2004
Introduktion til Logistisk Regression Morten Frydenberg, Inst. f. Biostatistik RESUME: 2 2. gang: 2002 Institut for Biostatistik, Århus Universitet MPH. studieår Specialmodul 4 Cand. San. uddannelsen.
Morten Frydenberg 14. marts 2006
Introduktion til Logistisk Regression Morten Frydenberg, Inst. f. Biostatistik 1 RESUME: 2 2. gang: 2006 Institut for Biostatistik, Århus Universitet MPH 1. studieår Specialmodul 4 Cand. San. uddannelsen
Vi vil analysere effekten af rygning og alkohol på chancen for at blive gravid ved at benytte forskellige Cox regressions modeller.
Løsning til øvelse i TTP dag 3 Denne øvelse omhandler tid til graviditet. Et studie vedrørende tid til graviditet (Time To Pregnancy = TTP) inkluderede 423 par i alderen 20-35 år. Parrene blev fulgt i
MPH specialmodul Epidemiologi og Biostatistik
MPH specialmodul Epidemiologi og Biostatistik Kvantitative udfaldsvariable 23. maj 2011 www.biostat.ku.dk/~sr/mphspec11 Susanne Rosthøj (Per Kragh Andersen) 1 Kapitelhenvisninger Andersen & Skovgaard:
Faculty of Health Sciences. Logistisk regression: Kvantitative forklarende variable
Faculty of Health Sciences Logistisk regression: Kvantitative forklarende variable Susanne Rosthøj Biostatistisk Afdeling Institut for Folkesundhedsvidenskab Københavns Universitet [email protected] Sammenhæng
Logistisk regression
Logistisk regression http://biostat.ku.dk/ kach/css2 Thomas A Gerds & Karl B Christensen 1 / 18 Logistisk regression I dag 1 Binær outcome variable død : i live syg : rask gravid : ikke gravid etc 1 prædiktor
MAT A HHX FACITLISTE TIL KAPITEL 8. Øvelser. Øvelse 1 Graf tegnes med CAS. Øvelse 2. Bedste rette linie: Øvelse 3. Øvelse 4.
1 af 12 MAT A HHX Udskriv siden FACITLISTE TIL KAPITEL 8 Øvelser Øvelse 1 Graf tegnes med CAS. Øvelse 2 Bedste rette linie: Øvelse 3 Bedste rette linie: Øvelse 4 Bedste rette linie: Øvelse 5 ad øvelse
Statistik ved Bachelor-uddannelsen i folkesundhedsvidenskab. Eksamensopgave E05. Socialklasse og kronisk sygdom
Statistik ved Bachelor-uddannelsen i folkesundhedsvidenskab Eksamensopgave E05 Socialklasse og kronisk sygdom Data: Tværsnitsundersøgelse fra 1986 Datamaterialet indeholder: Køn, alder, Højest opnåede
Dag 6: Interaktion. Overlevelsesanalyse
Dag 6: Interaktion. Overlevelsesanalyse How does CHD depend on gender and hypertension? Males: hypertension chd01 Females: Frequency Row Pct 0 1 Total ---------+--------+--------+ 0 352 95 447 78.75 21.25
Statistik II Lektion 3. Logistisk Regression Kategoriske og Kontinuerte Forklarende Variable
Statistik II Lektion 3 Logistisk Regression Kategoriske og Kontinuerte Forklarende Variable Setup: To binære variable X og Y. Statistisk model: Konsekvens: Logistisk regression: 2 binære var. e e X Y P
9. Chi-i-anden test, case-control data, logistisk regression.
Biostatistik - Cand.Scient.San. 2. semester Karl Bang Christensen Biostatististisk afdeling, KU [email protected], 35327491 9. Chi-i-anden test, case-control data, logistisk regression. http://biostat.ku.dk/~kach/css2014/
Logistisk regression
Logistisk regression Test af antagelsen om lineære effekter Modelkonstruktion og modelsøgning Hvilke variable og hvilke interaktioner skal inkluderes i regressionsmodellerne? 1 Logistiske regressionsmodeller
Opgavebesvarelse, logistisk regression
Opgavebesvarelse, logistisk regression Data ligger i rop.xls på kursushjemmesiden: http://staff.pubhealth.ku.dk/ jufo/courses/logistic/ Når du har gemt data på din computer, kan det indlæses i SAS med
Indvandrere og efterkommere i foreninger er frivillige i samme grad som danskere
Indvandrere og efterkommere i foreninger er frivillige i samme grad som danskere Bilag I afrapportering af signifikanstest i tabeller i artikel er der benyttet følgende illustration af signifikans: * p
Besvarelse af juul2 -opgaven
Besvarelse af juul2 -opgaven Spørgsmål 1 Indlæs data Dette gøres fra Analyst med File/Open, som sædvanlig. Spørgsmål 2 Lav regressionsanalyser for hvert køn af igf1 vs. alder for præpubertale (Tanner stadium
Overlevelse efter AMI. Hvilken betydning har følgende faktorer for risikoen for ikke at overleve: Køn og alder betragtes som confoundere.
Overlevelse efter AMI Hvilken betydning har følgende faktorer for risikoen for ikke at overleve: Diabetes VF (Venticular fibrillation) WMI (Wall motion index) CHF (Cardiac Heart Failure) Køn og alder betragtes
Postoperative komplikationer
Løsninger til øvelser i kategoriske data, oktober 2008 1 Postoperative komplikationer Udgangspunktet for vurdering af den ny metode må være en nulhypotese om at der er samme komplikationshyppighed, 20%.
Statikstik II 2. Lektion. Lidt sandsynlighedsregning Lidt mere om signifikanstest Logistisk regression
Statikstik II 2. Lektion Lidt sandsynlighedsregning Lidt mere om signifikanstest Logistisk regression Sandsynlighedsregningsrepetition Antag at Svar kan være Ja og Nej. Sandsynligheden for at Svar Ja skrives
Statistik kommandoer i Stata opdateret 16/3 2009 Erik Parner
Statistik kommandoer i Stata opdateret 16/3 2009 Erik Parner Indledning... 1 Hukommelse... 1 Simple beskrivelser... 1 Data manipulation... 2 Estimation af proportioner... 2 Estimation af rater... 2 Estimation
Løsning til opgave i logistisk regression
Løsning til øvelser i logistisk regression, november 2008 1 Løsning til opgave i logistisk regression 1. Først indlæses data, og vi kan lige sørge for at danne en dummy-variable for cml, som indikator
Logistisk Regression - fortsat
Logistisk Regression - fortsat Likelihood Ratio test Generel hypotese test Modelanalyse Indtil nu har vi set på to slags modeller: 1) Generelle Lineære Modeller Kvantitav afhængig variabel. Kvantitative
Statistik og Sandsynlighedsregning 2. IH kapitel 12. Overheads til forelæsninger, mandag 6. uge
Statistik og Sandsynlighedsregning 2 IH kapitel 12 Overheads til forelæsninger, mandag 6. uge 1 Fordelingen af én (1): Regressionsanalyse udfaldsvariabel responsvariabel afhængig variabel Y variabel 2
ØVELSER Statistik, Logistikøkonom Lektion 8 og 9: Simpel og multipel lineær regression
! ØVELSER Statistik, Logistikøkonom Lektion 8 og 9: Simpel og multipel lineær regression Eksempel 1 AT OPSTILLE EN SIMPEL LINEÆR REGRESSIONSMODEL - GENNEMGÅS AF JAKOB Et stort lager måler løbende sine
Logistisk regression. Statistik Kandidatuddannelsen i Folkesundhedsvidenskab
Logistis regression Statisti Kandidatuddannelsen i Folesundhedsvidensab Multipel logistis regression Antagelser: Binære observationer (Y i, i=,.,n) f.es Ja/Nej Høj/Lav Død/Levende Kodet: / 0 Y i uafhængige
Logistisk regression. Basal Statistik for medicinske PhD-studerende November 2008
Logistisk regression Basal Statistik for medicinske PhD-studerende November 2008 Bendix Carstensen Steno Diabetes Center, Gentofte & Biostatististisk afdeling, Københavns Universitet [email protected] www.biostat.ku.dk/~bxc
Statistik II 4. Lektion. Logistisk regression
Statistik II 4. Lektion Logistisk regression Logistisk regression: Motivation Generelt setup: Dikotom(binær) afhængig variabel Kontinuerte og kategoriske forklarende variable (som i lineær reg.) Eksempel:
Eksamen Bacheloruddannelsen i Medicin med industriel specialisering
Eksamen 2016 Titel på kursus: Uddannelse: Semester: Forsøgsdesign og metoder Bacheloruddannelsen i Medicin med industriel specialisering 6. semester Eksamensdato: 17-02-2015 Tid: kl. 09.00-11.00 Bedømmelsesform
Det kunne godt se ud til at ikke-rygere er ældre. Spredningen ser ud til at være nogenlunde ens i de to grupper.
1. Indlæs data. * HUSK at angive din egen placering af filen; data framing; infile '/home/sro00/mph2016/framing.txt' firstobs=2; input id sex age frw sbp sbp10 dbp chol cig chd yrschd death yrsdth cause;
Faculty of Health Sciences. Basal Statistik. Logistisk regression mm. Lene Theil Skovgaard. 5. marts 2018
Faculty of Health Sciences Basal Statistik Logistisk regression mm. Lene Theil Skovgaard 5. marts 2018 1 / 22 APPENDIX vedr. SPSS svarende til diverse slides: To-gange-to tabeller, s. 3 Plot af binære
Statistik II 1. Lektion. Analyse af kontingenstabeller
Statistik II 1. Lektion Analyse af kontingenstabeller Kursusbeskrivelse Omfang 5 kursusgange (forelæsning + opgaveregning) 5 kursusgange (mini-projekt) Emner Analyse af kontingenstabeller Logistisk regression
Morten Frydenberg Biostatistik version dato:
Caerphilly studiet Design og Data Biostatistik uge 14 mandag Morten Frydenberg, Afdeling for Biostatistik Poisson regression En primær tidsakse og ikke stykkevise konstante rater Cox proportional hazard
Mantel-Haenszel analyser. Stratificerede epidemiologiske analyser
Mantel-Haensel analyser Stratificerede epidemiologiske analyser 1 Den epidemiologiske synsvinkel: 1) Oftest asymmetriske (kausale) sammenhænge (Eksposition Sygdom/død) 2) Risikoen vurderes bedst ved hjælp
Naturvidenskabelig Bacheloruddannelse Forår 2006 Matematisk Modellering 1 Side 1
Matematisk Modellering 1 Side 1 I nærværende opgavesæt er der 16 spørgsmål fordelt på 4 opgaver. Ved bedømmelsen af besvarelsen vægtes alle spørgsmål lige. Endvidere lægges der vægt på, at det af besvarelsen
Betinget fordeling Uafhængighed. Beregning af forventet tabel Chi-kvadrat teststatistik Chi-kvadrat test. Chi-kvadratfordelingen Agresti - Summary
1 Kontingenstabeller Betinget fordeling Uafhængighed 2 Chi-kvadrat test for uafhængighed Beregning af forventet tabel Chi-kvadrat teststatistik Chi-kvadrat test. Chi-kvadratfordelingen Agresti - Summary
MPH specialmodul i epidemiologi og biostatistik. SAS. Introduktion til SAS. Eksempel: Blodtryk og fedme
MPH specialmodul i epidemiologi og biostatistik. SAS Introduktion til SAS. Display manager (programmering) Vinduer: program editor (med syntaks-check) log output reproducerbart (program teksten kan gemmes
Basal Statistik Kategoriske Data
Basal Statistik Kategoriske Data 8 oktober 2013 E 2013 Basal Statistik - Kategoriske data Michael Gamborg Institut for sygdomsforebyggelse Københavns Universitetshospital [email protected]
Epidemiologi og biostatistik. Uge 3, torsdag. Erik Parner, Afdeling for Biostatistik. Eksempel: Systolisk blodtryk
Eksempel: Systolisk blodtryk Udgangspunkt: Vi ønsker at prædiktere det systoliske blodtryk hos en gruppe af personer. Epidemiologi og biostatistik. Uge, torsdag. Erik Parner, Afdeling for Biostatistik.
Synopsis til eksamen i Statistik
Synopsis til eksamen i Statistik Kandidatuddannelsen i Folkesundhedsvidenskab Københavns Universitet december 2010 Eksamensnummer: 12 Antal anslag: 23.839 (svarende til 9,9 normalsider) - 1 - Indholdsfortegnelse
Log-lineære modeller. Analyse af symmetriske sammenhænge mellem kategoriske variable. Ordinal information ignoreres.
Log-lineære modeller Analyse af symmetriske sammenhænge mellem kategoriske variable. Ordinal information ignoreres. Kontingenstabel Contingency: mulighed/tilfælde Kontingenstabel: antal observationer (frekvenser)
Øvelse 7: Aktuar-tabeller, Kaplan-Meier kurver og log-rank test
Øvelse 7: Aktuar-tabeller, Kaplan-Meier kurver og log-rank test Formålet med øvelsen er at analysere risikoen for død forbundet med forskelligt alkoholforbrug. I denne øvelse skal analyserne foretages
En teoretisk årsagsmodel: Operationalisering: Vurdering af epidemiologiske undersøgelser. 1. Informationsproblemer Darts et eksempel på målefejl
Vurdering af epidemiologiske undersøgelser Jørn Attermann. februar 00 I denne forelæsning vil vi se på fejl, som kan have betydning for fortolkningen af resultater fra epidemiologiske undersøgelser. Traditionelt
12. september Epidemiologi og biostatistik. Forelæsning 4 Uge 3, torsdag. Niels Trolle Andersen, Afdelingen for Biostatistik. Regressionsanalyse
. september 5 Epidemiologi og biostatistik. Forelæsning Uge, torsdag. Niels Trolle Andersen, Afdelingen for Biostatistik. Lineær regressionsanalyse - Simpel lineær regression - Multipel lineær regression
Statistik FSV 4. semester 2014 Øvelser Uge 2: 11. februar
Århus 6. februar 2014 Morten Frydenberg Statistik FSV 4. semester 2014 Øvelser Uge 2: 11. februar Til disse øvelser har I brug for fishoil1.dta, der indeholder data fra det fiskeolie forsøg vi så på ved
Man indlæser en såkaldt frequency-table i SAS ved følgende kommandoer:
1 IHD-Lexis 1.1 Spørgsmål 1 Man indlæser en såkaldt frequency-table i SAS ved følgende kommandoer: data ihdfreq; input eksp alder pyrs cases; lpyrs=log(pyrs); cards; 0 2 346.87 2 0 1 979.34 12 0 0 699.14
Har du været på sol-ferie? Nævn 3 sammen-satte ord, som starter med sol! Fx sol-hat. Er en kasket god i solen? Hvorfor? Hvorfor ikke?
Opgave 1 Quiz og byt Klip langs de stiplede linier Modul 1 Hvad får du lyst til, når det er sommer? Har du været på sol-ferie? Hvad gør solen ved dit humør? Tæl til 10, men skift alle ulige tal ud med
Epidemiologi og biostatistik. Uge 3, torsdag. Erik Parner, Institut for Biostatistik. Regressionsanalyse
Epidemiologi og biostatistik. Uge, torsdag. Erik Parner, Institut for Biostatistik. Lineær regressionsanalyse - Simpel lineær regression - Multipel lineær regression Regressionsanalyse Regressionsanalyser
Introduktion til overlevelsesanalyse
Faculty of Health Sciences Introduktion til overlevelsesanalyse Kaplan-Meier estimatoren Susanne Rosthøj Biostatistisk Afdeling Institut for Folkesundhedsvidenskab Københavns Universitet [email protected]
Anvendt Statistik Lektion 6. Kontingenstabeller χ 2- test [ki-i-anden-test]
Anvendt Statistik Lektion 6 Kontingenstabeller χ 2- test [ki-i-anden-test] Kontingenstabel Formål: Illustrere/finde sammenhænge mellem to kategoriske variable Opbygning: En celle for hver kombination af
Morten Frydenberg Biostatistik version dato:
Tye og Tye 2 fejl Statistisk styrke Biostatistik uge 2 mandag Morten Frydenberg, Afdeling for Biostatistik Styrkeovervejelser i lanlægning af et studie Logistisk regression Præterm fødsel, rygning, alder,
Nyt i Analyseportalen og Web Report Studio. Analyseportalen
Nyt i Analyseportalen og Web Report Studio Analyseportalen Den nye Analyseportal er ikke meget anderledes end den gamle. Der er dog enkelte funktioner, der er blevet meget anderledes. De er omtalt i denne
Analyse af binære responsvariable
Analyse af binære responsvariable Susanne Rosthøj Biostatistisk Afdeling Institut for Folkesundhedsvidenskab Københavns Universitet 23. november 2012 Har mænd lettere ved at komme ind på Berkeley? UC Berkeley
Statistikøvelse Kandidatstudiet i Folkesundhedsvidenskab 28. September 2004
Statistikøvelse Kandidatstudiet i Folkesundhedsvidenskab 28. September 2004 Formål med Øvelsen: Formålet med øvelsen er at analysere om risikoen for død er forbundet med to forskellige vacciner BCG (mod
Statistik ved Bachelor-uddannelsen i folkesundhedsvidenskab. Stratificerede analyser
Statistik ved Bachelor-uddannelsen i folkesundhedsvidenskab Stratificerede analyser Dødsstraf-eksempel Betyder morderens farve noget for risikoen for dødsstraf? 1 Dødsstraf-eksempel: data Variable: Dødsstraf
Reeksamen i Statistik for biokemikere. Blok 3 2007.
Københavns Universitet Det Naturvidenskabelige Fakultet Reeksamen i Statistik for biokemikere. Blok 3 2007. Opgave 1. 3 timers skriftlig prøve. Alle hjælpemidler - også blyant - er tilladt. Opgavesættet
ØVELSER Statistik, Logistikøkonom Lektion 8 og 9: Simpel og multipel lineær regression
! ØVELSER Statistik, Logistikøkonom Lektion 8 og 9: Simpel og multipel lineær regression Eksempel 1 AT OPSTILLE EN SIMPEL LINEÆR REGRESSIONSMODEL - GENNEMGÅS AF JAKOB Et stort lager måler løbende sine
Introduktion til SPSS
Introduktion til SPSS Øvelserne på dette statistikkursus skal gennemføres ved hjælp af det såkaldte SPSS program. Det er erfaringsmæssigt sådan, at man i forbindelse af øvelserne på statistikkurser bruger
Præcision og effektivitet (efficiency)?
Case-kontrol studier PhD kursus i Epidemiologi Københavns Universitet 18 Sep 2012 Søren Friis Center for Kræftforskning, Kræftens Bekæmpelse Valg af design Problemstilling? Validitet? Præcision og effektivitet
Statistik for MPH: oktober Attributable risk, bestemmelse af stikprøvestørrelse (Silva: , )
Statistik for MPH: 7 29. oktober 2015 www.biostat.ku.dk/~pka/mph15 Attributable risk, bestemmelse af stikprøvestørrelse (Silva: 333-365, 381-383) Per Kragh Andersen 1 Fra den 6. uges statistikundervisning:
Multipel Lineær Regression
Multipel Lineær Regression Trin i opbygningen af en statistisk model Repetition af MLR fra sidst Modelkontrol Prædiktion Kategoriske forklarende variable og MLR Opbygning af statistisk model Specificer
Generelle lineære modeller
Generelle lineære modeller Regressionsmodeller med én uafhængig intervalskala variabel: Y en eller flere uafhængige variable: X 1,..,X k Den betingede fordeling af Y givet X 1,..,X k antages at være normal
Unge afgiver rask væk personlige oplysninger for at få adgang til sociale medier
Af: Juniorkonsulent Christoffer Thygesen og cheføkonom Martin Kyed Notat 6. februar 06 Unge afgiver rask væk personlige oplysninger for at få adgang til sociale medier Analysens hovedresultater Kun hver
Velkommen til kurset. Teoretisk Statistik. Lærer: Niels-Erik Jensen
1 Velkommen til kurset Teoretisk Statistik Lærer: Niels-Erik Jensen Plan for i dag: 1. Eks: Er euro'en skæv? 4. Praktiske informationer 2. Eks: Regressionsmodel (kap. 1) 5. Lidt om kursets indhold 3. Hvad
Anvendt Statistik Lektion 9. Variansanalyse (ANOVA)
Anvendt Statistik Lektion 9 Variansanalyse (ANOVA) 1 Undersøge sammenhæng Undersøge sammenhænge mellem kategoriske variable: χ 2 -test i kontingenstabeller Undersøge sammenhæng mellem kontinuerte variable:
1 Ensidet variansanalyse(kvantitativt outcome) - sammenligning af flere grupper(kvalitativ
Indhold 1 Ensidet variansanalyse(kvantitativt outcome) - sammenligning af flere grupper(kvalitativ exposure) 2 1.1 Variation indenfor og mellem grupper.......................... 2 1.2 F-test for ingen
Stastistik og Databehandling på en TI-83
Stastistik og Databehandling på en TI-83 Af Jonas L. Jensen ([email protected]). 1 Fordelingsfunktioner Husk på, at en fordelingsfunktion for en stokastisk variabel X er funktionen F X (t) = P (X t) og at
KURSUS I ANALYSEPORTALEN (AP) DANSK PALLIATIV DATABASE 3 1. ÅBNING AF ANALYSEPORTALEN 3 2. OPRETTELSE AF EN RAPPORT DVS. START AF DATAANALYSE 4
KURSUS I ANALYSEPORTALEN (AP) DANSK PALLIATIV DATABASE 3 1. ÅBNING AF ANALYSEPORTALEN 3 2. OPRETTELSE AF EN RAPPORT DVS. START AF DATAANALYSE 4 3. VALG AF DATA 5 4. BEHANDLING OG VISNING AF DATA 7 1 Liste
Korrelation Pearson korrelationen
-9- Eidemiologi og biostatistik. Forelæsning Uge, torsdag. Niels Trolle Andersen, Afdelingen for Biostatistik. Korrelation Kliniske målinger - Kliniske målinger og variationskilder - Estimation af størrelsen
Multipel regression. M variable En afhængig (Y) M-1 m uafhængige / forklarende / prædikterende (X 1 til X m ) Model
Multipel regression M variable En afhængig (Y) M-1 m uafhængige / forklarende / prædikterende (X 1 til X m ) Model Y j 1 X 1j 2 X 2j... m X mj j eller m Y j 0 i 1 i X ij j BEMÆRK! j svarer til individ
grupper(kvalitativ exposure) Variation indenfor og mellem grupper F-test for ingen effekt AnovaTabel Beregning af p-værdi i F-fordelingen
1 Ensidet variansanalyse(kvantitativt outcome) - sammenligning af flere grupper(kvalitativ exposure) Variation indenfor og mellem grupper F-test for ingen effekt AnovaTabel Beregning af p-værdi i F-fordelingen
