Skriftlig Eksamen ST501: Science Statistik Mandag den 11. juni 2007 kl
|
|
|
- Valdemar Olesen
- 10 år siden
- Visninger:
Transkript
1 Skriftlig Eksamen ST501: Science Statistik Mandag den 11. juni 2007 kl Forskningsenheden for Statistik IMADA Syddansk Universitet Alle skriftlige hjælpemidler samt brug af lommeregner er tilladt. Opgavesættet består af 4 opgaver(6 sider incl. forside). For hver opgave er angivet den vægt i procent, hvormed opgaven indgår i bedømmelsen. 1
2 Opgave1(20%) Et tyverisikringsfirma har tre slags kunder, som fordeler sig på følgende måde: Private20%. Forretninger 30%. Industrivirksomheder 50%. Nårderindgårenalarmtilfirmaeterderenvissandsynlighedfor,atalarmen er falsk: Hvis alarmen kommer fra en privat kunde er sandsynligheden for falsk alarm Hvis alarmen kommer fra en forretningskunde er sandsynligheden for falsk alarm 0.1. Hvis alarmen kommer fra en industrivirksomhed er sandsynligheden for falsk alarm Nårderindgårenalarmtilfirmaet,hvadersåsandsynlighedenforat alarmen er falsk? Svar: Brug loven om total sandsynlighed: P(Falsk) = P(Falsk Privat)P(Privat)+ P(Falsk Forretning)P(Forretning) + P(Falsk Industri)P(Industri) = = Find den betingede sandsynlighed, givet at alarmen er falsk, for hver af følgende hændelser: Deterenprivatkunde. Svar: P(Privat Falsk) = P(Falsk Privat)P(Privat) P(Falsk) = =
3 Det er en forretningskunde.svar: P(Forretning Falsk) = P(Falsk Forretning)P(Forretning) P(Falsk) = = Det er en industrivirksomhed. Svar: P(Industri Falsk) = P(Falsk Industri)P(Industri) P(Falsk) = =
4 Opgave2(20%) I et køsystem er ventetiden(i minutter) for hver kunde en stokastisk variabel X, som er eksponentialfordelt med middelværdi µ = Findsandsynlighedenfor,atventetidenforenkundeermindreend3 minutter. Svar: En eksponentialfordelt stokastisk variabel med parameter λ har middelværdi µ = 1/λ. En middelværdi på 2 giver derfor λ = 1/2. FordelingsfunktionenerderforF X (x)=1 e 0.5 x. Resultateterderfor P(X 3)=1 e = LadX 1 + +X n betegnedensamledeventetidforn=500kunder, hvor det antages at de n ventetider er indbyrdes uafhængige. Udregn, approximativt, sandsynligheden for at den samlede ventetid overstiger 18 timer. Svar: Bemærk, at en eksponentialfordelt stokastisk variabel har variansvar(x)=1/λ 2,altså4idetgældendetilfælde. Fradencentrale grænseværdisætningfås,danerstor,atsummens n erapproximativt normalfordelt, S n N(n 2,n 4)=N(1000,2000) Resultatet er derfor, ved brug af Tabel A.3 ( ) P(S n > 18 60) 1 Φ 2000 ( ) = 1 Φ 2000 = 1 Φ(1.79) = =
5 Opgave3(30%) Betragt et smagsdommerpanel bestående af n personer. En triangeltest udføres ved, at hver dommer præsenteres for tre smagsprøver. Af disse tre smagsprøver er de to helt ens, mens den tredje smagsprøve skiller sig ud fra de to andre. Lad Y være den stokastiske variabel, som angiver hvor mange af de n smagsdommere, som svarer rigtigt, dvs. kan identificere den smagsprøve,somskillersigudfradetoandre. 1. Hvilke antagelser kræves der, for at konkludere, at Y er binomialfordelt b(n,p)? Svar: De n smagsdommere skal være uafhængige af hinanden, med hensyn til om de svarer rigtigt. Desuden skal sandsynligheden for at svare rigtigt være den samme for alle n dommere. Under disse omstændigheder er Y binomialfordelt b(n, p). 2. Gør rede for, at værdien p = 1/3 svarer til, at smagsdommerne ikke kansmageforskel. Hvisp=1/3ogn=10hvadersåsandsynligheden for, at mere end halvdelen af smagsdommerne svarer rigtigt? Svar:Hvisensmagsdommerikkekansmageforskel,måvigåudfra,at han eller hun vælger den smagsprøve, som tilsyneladende skiller sig ud fra de to andre, helt tilfældigt blandt de tre smagsprøver, hvilket sker medsandsynlighed1/3. Forn=10fåsfraTabelA.1(medp=0.35) P(Y > 5)=1 P(Y 5) = Brugesistedetp=0.30fåsresultatat = Detkorrekte tal ligger et sted mellem disse to værdier. En eksakt udregning med p=1/3udføressomfølger: 5 ( ) n P(Y 5)= p i (1 p) n i = 5 i=0 i=0 ( 10 i i ) 2 10 i 3 10 = =
6 Resultatet er derfor P(Y >5)= = I en bestemt triangeltest svarede 13 ud af 25 smagsdommere rigtigt. Ud fra disse data skal du udregne et 95%(approximativt) konfidensinterval for parameteren p. Tyder disse data på, at smagsdommerne kan smage forskel? Svar: Vi skal lave et 95% konfidensinterval for p. Estimatet er ˆp = 13/25 = Standard error er SE= 0.52 (1 0.52)/25= Medtabelopslag z = 1.96 fås endepunkterne 0.52± , altså intervallet (0.3242, ). Dadetteintervalindeholderværdien1/3=0.33,såtyderdetikkepå at smagsdommerne kan smage forskel, idet ˆp således ikke er signifikant forskelligfra1/3påniveauα=5%. 6
7 Opgave4(30%) Den velkendte 13-skala skal nu udskiftes med den nye 7-skala, som er defineret som følger: 12: For den fremragende præstation. 10: For den fortrinlige præstation. 7: Fordengodepræstation. 4: Fordenjævnepræstation. 02: For den tilstrækkelige præstation. 00: For den utilstrækkelige præstation. 3: For den ringe præstation. I karakterbekendtgørelsen ses følgende omsætningstabel mellem ny og gammel skala. 7-skala 13-skala En gymnasielærer ønsker at omregne karakterværdier fra gammel til ny skala ved hjælp af lineær regression. Denne metode kan især være praktisk, hvis man ønsker at omregne et karaktergennemsnit, som jo ikke behøver at være blandt de værdier som optræder i tabellen. Lad y være karakterværdi efter 7-skalaen og lad x være karakterværdi efter 13-skalaen. 7
8 1. Dataitabellenskalbrugessomgrundlagforomregningen,idetdeopfattessomn=10observationsparfraenlineærregressionafypåx. Nedenfor ses output fra en SAS/Insight analyse af data. Er betingelserne for at bruge lineær regression opfyldt? Angiv den estimerede sammenhæng mellem ny og gammel karakterskala. Svar: Detdrejersigomom kunstige data,sådeternoktvivlsomt, omnogenstatistiskmodelkanbeskrivehvadderjoibundoggrunder to menneskeskabte skalaer. Specielt er det uklart, hvad uafhængighed skal betyde i dette tilfælde. Men ud fra scatterplottet for x og y kan man godt gå med til at der skulle være en lineær sammenhæng. Residualplottet give ikke anledning til at tvivle på at variansen skulle være konstatn, og QQ-plottet for residualerne (som er pænt lineært) bekræfter, at residualerne er normalfordelte. I det hele taget gør det ringe antal data det vanskeligt at tilbagevise den lineære regressionsmodel. Den estimerede regressionslinie er givet ved hvilket ses af SAS-outputtet. y= x, Uanset svaret på spørgsmål 1 vil vi følge gymnasielærerens idé og bruge lineær regression til omregningen. 2. Den "gennemsnitlige" præstation i 13-skalaen er 8, mens den er 7 i 7-skalaen. Undersøg, ved hjælp af en passende test, om denne sammenhænggælderteoretisk,altsåomβ 0 +β 1 8=7,hvorβ 0 ogβ 1 er regressionsliniens parametre. Svar: ViskaltestehypotesenH 0 :β 0 +β 1 8=7. Daintetandeter opgivet vil vi bruge en tosidet test. Den forventede middelrespons er ŷ 0 = = SEforparameterenβ 0 +β 1 8ergivetved [ ] 1 SE = MSE n +(x 0 x) 2 SSX [ ] 1 = (8 7.2) =
9 Det giver følgende t-test t= = Tabelopslag t 8,0.975 = Altså kan nulhypotesen accepteres på niveau5%. 3. Den laveste beståelseskarakter i 13-skalaen er som bekendt 6, mens den laveste beståelseskarakter i 7-skalaen er 02. Udregn et 95% prædiktionsinterval for Y svarende til værdien x = 6. Indeholder dette interval værdien y = 2? Giver dette resultat anledning til bekymring? Du skal argumentere for dine konklusioner. Svar:Den forventede middelrespons er nu ŷ 0 = = Den tilhørende SE er [ SE = MSE 1+ 1 ] n +(x 0 x) 2 SSX [ = ] 10 +(6 7.2) = Tabelopslag t 8,0.975 = som før. Endepunkter i intervallet er ± , altså fås prædiktionsintervallet (0.0198, ). Intervallet indeholder værdien 2, hvilket er fint, men det er et temmelig bredt interval. Det er lidt bekymrende, da det afspejler, at sammenhængen mellem ny og gammel skala ikke er særlig velbestemt ved denne metode. 9
10 10
11 11
Skriftlig Eksamen ST501: Science Statistik Mandag den 11. juni 2007 kl. 15.00 18.00
Skriftlig Eksamen ST501: Science Statistik Mandag den 11. juni 2007 kl. 15.00 18.00 Forskningsenheden for Statistik IMADA Syddansk Universitet Alle skriftlige hjælpemidler samt brug af lommeregner er tilladt.
Skriftlig Eksamen ST501: Science Statistik Tirsdag den 8. juni 2010 kl
Skriftlig Eksamen ST501: Science Statistik Tirsdag den 8. juni 2010 kl. 9.00 12.00 IMADA Syddansk Universitet Alle skriftlige hjælpemidler samt brug af lommeregner er tilladt. Opgavesættet består af 5
Skriftlig eksamen Science statistik- ST501
SYDDANSK UNIVERSITET INSTITUT FOR MATEMATIK OG DATALOGI Skriftlig eksamen Science statistik- ST501 Torsdag den 21. januar Opgavesættet består af 5 opgaver, med i alt 13 delspørgsmål, som vægtes ligeligt.
Skriftlig Eksamen ST501: Sandsynlighedsteori og Statistik Mandag den 31. oktober 2005 kl
Skriftlig Eksamen ST501: Sandsynlighedsteori og Statistik Mandag den 31. oktober 2005 kl. 14.30-17.30 Forskningsenheden for Statistik Syddansk Universitet Alle skriftlige hjælpemidler samt brug af lommeregner
Hypotesetest. Altså vores formodning eller påstand om tingens tilstand. Alternativ hypotese (hvis vores påstand er forkert) H a : 0
Hypotesetest Hypotesetest generelt Ingredienserne i en hypotesetest: Statistisk model, f.eks. X 1,,X n uafhængige fra bestemt fordeling. Parameter med estimat. Nulhypotese, f.eks. at antager en bestemt
Hvad er danskernes gennemsnitshøjde? N = 10. X 1 = 169 cm. X 2 = 183 cm. X 3 = 171 cm. X 4 = 113 cm. X 5 = 174 cm
Kon densintervaller og vurdering af estimaters usikkerhed Claus Thorn Ekstrøm KU Biostatistik [email protected] Marts 18, 2019 Slides @ biostatistics.dk/talks/ 1 Population og stikprøve 2 Stikprøvevariation
Note til styrkefunktionen
Teoretisk Statistik. årsprøve Note til styrkefunktionen Først er det vigtigt at gøre sig klart, at når man laver statistiske test, så kan man begå to forskellige typer af fejl: Type fejl: At forkaste H
Oversigt. 1 Gennemgående eksempel: Højde og vægt. 2 Korrelation. 3 Regressionsanalyse (kap 11) 4 Mindste kvadraters metode
Kursus 02402 Introduktion til Statistik Forelæsning 11: Kapitel 11: Regressionsanalyse Oversigt 1 Gennemgående eksempel: Højde og vægt 2 Korrelation 3 Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse
Modul 6: Regression og kalibrering
Forskningsenheden for Statistik ST501: Science Statistik Bent Jørgensen Modul 6: Regression og kalibrering 6.1 Årsag og virkning................................... 1 6.2 Kovarians og korrelation...............................
Modul 12: Regression og korrelation
Forskningsenheden for Statistik ST01: Elementær Statistik Bent Jørgensen Modul 12: Regression og korrelation 12.1 Sammenligning af to regressionslinier........................ 1 12.1.1 Test for ens hældning............................
Forelæsning 11: Kapitel 11: Regressionsanalyse
Kursus 02402 Introduktion til Statistik Forelæsning 11: Kapitel 11: Regressionsanalyse Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220 Danmarks Tekniske Universitet 2800
Løsning til eksaminen d. 14. december 2009
DTU Informatik 02402 Introduktion til Statistik 200-2-0 LFF/lff Løsning til eksaminen d. 4. december 2009 Referencer til Probability and Statistics for Engineers er angivet i rækkefølgen [8th edition,
Normalfordelingen. Statistik og Sandsynlighedsregning 2
Normalfordelingen Statistik og Sandsynlighedsregning 2 Repetition og eksamen Erfaringsmæssigt er normalfordelingen velegnet til at beskrive variationen i mange variable, blandt andet tilfældige fejl på
Naturvidenskabelig Bacheloruddannelse Forår 2006 Matematisk Modellering 1 Side 1
Matematisk Modellering 1 Side 1 I nærværende opgavesæt er der 16 spørgsmål fordelt på 4 opgaver. Ved bedømmelsen af besvarelsen vægtes alle spørgsmål lige. Endvidere lægges der vægt på, at det af besvarelsen
Reeksamen i Statistik for Biokemikere 6. april 2009
Københavns Universitet Det Naturvidenskabelige Fakultet Reeksamen i Statistik for Biokemikere 6. april 2009 Alle hjælpemidler er tilladt, og besvarelsen må gerne skrives med blyant. Opgavesættet er på
To samhørende variable
To samhørende variable Statistik er tal brugt som argumenter. - Leonard Louis Levinsen Antagatviharn observationspar x 1, y 1,, x n,y n. Betragt de to tilsvarende variable x og y. Hvordan måles sammenhængen
02402 Løsning til testquiz02402f (Test VI)
02402 Løsning til testquiz02402f (Test VI) Spørgsmål 4. En ejendomsmægler ønsker at undersøge om hans kunder får mindre end hvad de har forlangt, når de sælger deres bolig. Han har regisreret følgende:
Teoretisk Statistik, 2. december 2003. Sammenligning af poissonfordelinger
Uge 49 I Teoretisk Statistik, 2. december 2003 Sammenligning af poissonfordelinger o Generel teori o Sammenligning af to poissonfordelinger o Eksempel Opsummering om multinomialfordelinger Fishers eksakte
Konfidensintervaller og Hypotesetest
Konfidensintervaller og Hypotesetest Konfidensinterval for andele χ -fordelingen og konfidensinterval for variansen Hypoteseteori Hypotesetest af middelværdi, varians og andele Repetition fra sidst: Konfidensintervaller
Kursusindhold: Produkt og marked - matematiske og statistiske metoder. Monte Carlo
Kursusindhold: Produkt og marked - matematiske og statistiske metoder Rasmus Waagepetersen Institut for Matematiske Fag Aalborg Universitet Sandsynlighedsregning og lagerstyring Normalfordelingen og Monte
Eksamen i Statistik for biokemikere. Blok
Eksamen i Statistik for biokemikere. Blok 2 2007. Vejledende besvarelse 22-01-2007, Niels Richard Hansen Bemærkning: Flere steder er der givet en argumentation (f.eks. baseret på konfidensintervaller)
Opgave 1 Betragt to diskrete stokastiske variable X og Y. Antag at sandsynlighedsfunktionen p X for X er givet ved
Matematisk Modellering 1 (reeksamen) Side 1 Opgave 1 Betragt to diskrete stokastiske variable X og Y. Antag at sandsynlighedsfunktionen p X for X er givet ved { 1 hvis x {1, 2, 3}, p X (x) = 3 0 ellers,
Multipel Lineær Regression
Multipel Lineær Regression Trin i opbygningen af en statistisk model Repetition af MLR fra sidst Modelkontrol Prædiktion Kategoriske forklarende variable og MLR Opbygning af statistisk model Specificer
Program: 1. Repetition: p-værdi 2. Simpel lineær regression. 1/19
Program: 1. Repetition: p-værdi 2. Simpel lineær regression. 1/19 For test med signifikansniveau α: p < α forkast H 0 2/19 p-værdi Betragt tilfældet med test for H 0 : µ = µ 0 (σ kendt). Idé: jo større
Dagens Emner. Likelihood teori. Lineær regression (intro) p. 1/22
Dagens Emner Likelihood teori Lineær regression (intro) p. 1/22 Likelihood-metoden M : X i N(µ,σ 2 ) hvor µ og σ 2 er ukendte Vi har, at L(µ,σ 2 ) = ( 1 2πσ 2)n/2 e 1 2σ 2 P n (x i µ) 2 er tætheden som
Produkt og marked - matematiske og statistiske metoder
Produkt og marked - matematiske og statistiske metoder Rasmus Waagepetersen Institut for Matematiske Fag Aalborg Universitet February 19, 2016 1/26 Kursusindhold: Sandsynlighedsregning og lagerstyring
Modul 5: Test for én stikprøve
Forskningsenheden for Statistik ST01: Elementær Statistik Bent Jørgensen Modul 5: Test for én stikprøve 5.1 Test for middelværdi................................. 1 5.1.1 t-fordelingen.................................
Analysestrategi. Lektion 7 slides kompileret 27. oktober 200315:24 p.1/17
nalysestrategi Vælg statistisk model. Estimere parametre i model. fx. lineær regression Udføre modelkontrol beskriver modellen data tilstrækkelig godt og er modellens antagelser opfyldte fx. vha. residualanalyse
Løsning eksamen d. 15. december 2008
Informatik - DTU 02402 Introduktion til Statistik 2010-2-01 LFF/lff Løsning eksamen d. 15. december 2008 Referencer til Probability and Statistics for Engineers er angivet i rækkefølgen [8th edition, 7th
Statistik II 4. Lektion. Logistisk regression
Statistik II 4. Lektion Logistisk regression Logistisk regression: Motivation Generelt setup: Dikotom(binær) afhængig variabel Kontinuerte og kategoriske forklarende variable (som i lineær reg.) Eksempel:
Anvendt Statistik Lektion 7. Simpel Lineær Regression
Anvendt Statistik Lektion 7 Simpel Lineær Regression 1 Er der en sammenhæng? Plot af mordraten () mod fattigdomsraten (): Scatterplot Afhænger mordraten af fattigdomsraten? 2 Scatterplot Et scatterplot
Rettevejledning til eksamen i Kvantitative metoder 1, 2. årsprøve 2. januar 2007
Rettevejledning til eksamen i Kvantitative metoder 1,. årsprøve. januar 007 I rettevejledningen henvises der til Berry and Lindgren "Statistics Theory and methods"(b&l) hvis ikke andet er nævnt. Opgave
Module 4: Ensidig variansanalyse
Module 4: Ensidig variansanalyse 4.1 Analyse af én stikprøve................. 1 4.1.1 Estimation.................... 3 4.1.2 Modelkontrol................... 4 4.1.3 Hypotesetest................... 6 4.2
Institut for Matematiske Fag Matematisk Modellering 1 UGESEDDEL 6
Institut for Matematiske Fag Matematisk Modellering 1 Aarhus Universitet Eva B. Vedel Jensen 25. februar 2008 UGESEDDEL 6 Forelæsningerne torsdag den 21. februar og tirsdag den 26. februar. Jeg har gennemgået
Reeksamen i Statistik for biokemikere. Blok 3 2007.
Københavns Universitet Det Naturvidenskabelige Fakultet Reeksamen i Statistik for biokemikere. Blok 3 2007. Opgave 1. 3 timers skriftlig prøve. Alle hjælpemidler - også blyant - er tilladt. Opgavesættet
Eksamen i Statistik for Biokemikere, Blok januar 2009
Københavns Universitet Det Naturvidenskabelige Fakultet Eksamen i Statistik for Biokemikere, Blok 2 2008 09 19. januar 2009 Alle hjælpemidler er tilladt, og besvarelsen må gerne skrives med blyant. Opgavesættet
Anvendt Statistik Lektion 9. Variansanalyse (ANOVA)
Anvendt Statistik Lektion 9 Variansanalyse (ANOVA) 1 Undersøge sammenhæng Undersøge sammenhænge mellem kategoriske variable: χ 2 -test i kontingenstabeller Undersøge sammenhæng mellem kontinuerte variable:
Løsning til eksamen d.27 Maj 2010
DTU informatic 02402 Introduktion til Statistik Løsning til eksamen d.27 Maj 2010 Referencer til Probability and Statistics for Engineers er angivet i rækkefølgen [8th edition, 7th edition]. Opgave I.1
Eksamen ved. Københavns Universitet i. Kvantitative forskningsmetoder. Det Samfundsvidenskabelige Fakultet
Eksamen ved Københavns Universitet i Kvantitative forskningsmetoder Det Samfundsvidenskabelige Fakultet 14. december 2011 Eksamensnummer: 5 14. december 2011 Side 1 af 6 1) Af boxplottet kan man aflæse,
Normalfordelingen. Statistik og Sandsynlighedsregning 2
Statistik og Sandsynlighedsregning 2 Repetition og eksamen T-test Normalfordelingen Erfaringsmæssigt er normalfordelingen velegnet til at beskrive variationen i mange variable, blandt andet tilfældige
Tema. Model og modelkontrol ( Fx. en normalfordelt obs. række m. kendt varians) Estimation af parametre. Fordeling. Hypotese og test. Teststørrelse.
Tema Model og modelkontrol ( Fx. en normalfordelt obs. række m. kendt varians) Estimation af parametre. Fordeling. (Fx. x. µ) Hypotese og test. Teststørrelse. (Fx. H 0 : µ = µ 0 ) konfidensintervaller
Anvendt Statistik Lektion 9. Variansanalyse (ANOVA)
Anvendt Statistik Lektion 9 Variansanalyse (ANOVA) 1 Undersøge sammenhæng Undersøge sammenhænge mellem kategoriske variable: χ 2 -test i kontingenstabeller Undersøge sammenhæng mellem kontinuerte variable:
Anvendt Statistik Lektion 8. Multipel Lineær Regression
Anvendt Statistik Lektion 8 Multipel Lineær Regression 1 Simpel Lineær Regression (SLR) y Sammenhængen mellem den afhængige variabel (y) og den forklarende variabel (x) beskrives vha. en SLR: ligger ikke
Program. t-test Hypoteser, teststørrelser og p-værdier. Hormonkonc.: statistisk model og konfidensinterval. Hormonkoncentration: data
Faculty of Life Sciences Program t-test Hypoteser, teststørrelser og p-værdier Claus Ekstrøm E-mail: [email protected] Resumé og hængepartier fra sidst. Eksempel: effekt af foder på hormonkoncentration
Lineær regression i SAS. Lineær regression i SAS p.1/20
Lineær regression i SAS Lineær regression i SAS p.1/20 Lineær regression i SAS Simpel lineær regression Grafisk modelkontrol Multipel lineær regression SAS-procedurer: PROC REG PROC GPLOT Lineær regression
Statikstik II 2. Lektion. Lidt sandsynlighedsregning Lidt mere om signifikanstest Logistisk regression
Statikstik II 2. Lektion Lidt sandsynlighedsregning Lidt mere om signifikanstest Logistisk regression Sandsynlighedsregningsrepetition Antag at Svar kan være Ja og Nej. Sandsynligheden for at Svar Ja skrives
Dagens Emner. Likelihood-metoden. MLE - fortsat MLE. Likelihood teori. Lineær regression (intro) Vi har, at
Likelihood teori Lineær regression (intro) Dagens Emner Likelihood-metoden M : X i N(µ,σ 2 ) hvor µ og σ 2 er ukendte Vi har, at L(µ,σ 2 1 ) = ( 2πσ 2)n/2 e 1 2 P n (xi µ)2 er tætheden som funktion af
Uge 43 I Teoretisk Statistik, 21. oktober Forudsigelser
Uge 43 I Teoretisk Statistik,. oktober 3 Simpel lineær regressionsanalyse Forudsigelser Fortolkning af regressionsmodellen Ekstreme observationer Transformationer Sammenligning af to regressionslinier
Regneregler for middelværdier M(X+Y) = M X +M Y. Spredning varians og standardafvigelse. 1 n VAR(X) Y = a + bx VAR(Y) = VAR(a+bX) = b²var(x)
Formelsamlingen 1 Regneregler for middelværdier M(a + bx) a + bm X M(X+Y) M X +M Y Spredning varians og standardafvigelse VAR(X) 1 n n i1 ( X i - M x ) 2 Y a + bx VAR(Y) VAR(a+bX) b²var(x) 2 Kovariansen
Anvendt Statistik Lektion 6. Kontingenstabeller χ 2 -test [ki-i-anden-test]
Anvendt Statistik Lektion 6 Kontingenstabeller χ 2 -test [ki-i-anden-test] 1 Kontingenstabel Formål: Illustrere/finde sammenhænge mellem to kategoriske variable Opbygning: En celle for hver kombination
Epidemiologi og biostatistik. Uge 3, torsdag. Erik Parner, Institut for Biostatistik. Regressionsanalyse
Epidemiologi og biostatistik. Uge, torsdag. Erik Parner, Institut for Biostatistik. Lineær regressionsanalyse - Simpel lineær regression - Multipel lineær regression Regressionsanalyse Regressionsanalyser
Stastistik og Databehandling på en TI-83
Stastistik og Databehandling på en TI-83 Af Jonas L. Jensen ([email protected]). 1 Fordelingsfunktioner Husk på, at en fordelingsfunktion for en stokastisk variabel X er funktionen F X (t) = P (X t) og at
Epidemiologi og biostatistik. Uge 3, torsdag. Erik Parner, Afdeling for Biostatistik. Eksempel: Systolisk blodtryk
Eksempel: Systolisk blodtryk Udgangspunkt: Vi ønsker at prædiktere det systoliske blodtryk hos en gruppe af personer. Epidemiologi og biostatistik. Uge, torsdag. Erik Parner, Afdeling for Biostatistik.
Forelæsning 9: Inferens for andele (kapitel 10)
Kursus 02402 Introduktion til Statistik Forelæsning 9: Inferens for andele (kapitel 10) Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220 Danmarks Tekniske Universitet 2800
Statistik Lektion 3. Simultan fordelte stokastiske variable Kontinuerte stokastiske variable Normalfordelingen
Statistik Lektion 3 Simultan fordelte stokastiske variable Kontinuerte stokastiske variable Normalfordelingen Repetition En stokastisk variabel er en funktion defineret på S (udfaldsrummet, der antager
Anvendt Statistik Lektion 4. Hypotesetest generelt Test for middelværdi Test for andele
Anvendt Statistik Lektion 4 Hypotesetest generelt Test for middelværdi Test for andele Hypoteser og Test Hypotese I statistik er en hypotese en påstand om en populationsparameter. Typisk en påstand om
men nu er Z N((µ 1 µ 0 ) n/σ, 1)!! Forkaster hvis X 191 eller X 209 eller
Type I og type II fejl Type I fejl: forkast når hypotese sand. α = signifikansniveau= P(type I fejl) Program (8.15-10): Hvis vi forkaster når Z < 2.58 eller Z > 2.58 er α = P(Z < 2.58) + P(Z > 2.58) =
NATURVIDENSKABELIG KANDIDATEKSAMEN VED KØBENHAVNS UNIVERSITET.
NATURVIDENSKABELIG KANDIDATEKSAMEN VED KØBENHAVNS UNIVERSITET. Eksamen i Statistik 1 Tag-hjem prøve 1. juli 2010 24 timer Alle hjælpemidler er tilladt. Det er tilladt at skrive med blyant og benytte viskelæder,
Normalfordelingen. Det centrale er gentagne målinger/observationer (en stikprøve), der kan beskrives ved den normale fordeling: 1 2πσ
Normalfordelingen Det centrale er gentagne målinger/observationer (en stikprøve), der kan beskrives ved den normale fordeling: f(x) = ( ) 1 exp (x µ)2 2πσ 2 σ 2 Frekvensen af observationer i intervallet
12. september Epidemiologi og biostatistik. Forelæsning 4 Uge 3, torsdag. Niels Trolle Andersen, Afdelingen for Biostatistik. Regressionsanalyse
. september 5 Epidemiologi og biostatistik. Forelæsning Uge, torsdag. Niels Trolle Andersen, Afdelingen for Biostatistik. Lineær regressionsanalyse - Simpel lineær regression - Multipel lineær regression
Regressionsanalyser. Hvad er det statistiske problem? Primære og sekundære problemer. Metodeproblemer.
Regressionsanalyser Hvad er det statistiske problem? Primære og sekundære problemer. Metodeproblemer. Hvilke faglige problemer kan man løse vha. regressionsanalyser? 1 Regressionsanalyser Det primære problem
Teoretisk Statistik, 13 april, 2005
Poissonprocessen Teoretisk Statistik, 13 april, 2005 Setup og antagelser Fordelingen af X(t) og et eksempel Ventetider i poissonprocessen Fordeling af ventetiden T 1 til første ankomst Fortolkning af λ
Kursusindhold: X i : tilfældig værdi af ite eksperiment. Antag X i kun antager værdierne 1, 2,..., M.
Kursusindhold: Produkt og marked - matematiske og statistiske metoder Rasmus Waagepetersen Institut for Matematiske Fag Aalborg Universitet March 1, 2013 Sandsynlighedsregning og lagerstyring Normalfordelingen
Bilag 7. SFA-modellen
Bilag 7 SFA-modellen November 2016 Bilag 7 Konkurrence- og Forbrugerstyrelsen Forsyningssekretariatet Carl Jacobsens Vej 35 2500 Valby Tlf.: +45 41 71 50 00 E-mail: [email protected] Online ISBN 978-87-7029-650-2
Løsning til eksaminen d. 29. maj 2009
DTU Informatik 02402 Introduktion til Statistik 20-2-01 LFF/lff Løsning til eksaminen d. 29. maj 2009 Referencer til Probability and Statistics for Engineers er angivet i rækkefølgen [8th edition, 7th
Økonometri 1. Dummyvariabler 13. oktober Økonometri 1: F10 1
Økonometri 1 Dummyvariabler 13. oktober 2006 Økonometri 1: F10 1 Dagens program Dummyvariabler i den multiple regressionsmodel (Wooldridge kap. 7.3-7.6) Dummy variabler for kvalitative egenskaber med flere
NATURVIDENSKABELIG KANDIDATEKSAMEN VED KØBENHAVNS UNIVERSITET.
NATURVIDENSKABELIG KANDIDATEKSAMEN VED KØBENHAVNS UNIVERSITET. Eksamen i Statistik 1TS Teoretisk statistik Den skriftlige prøve Sommer 2005 3 timer - alle hjælpemidler tilladt Det er tilladt at skrive
Kursus 02402 Introduktion til Statistik. Forelæsning 7: Kapitel 7 og 8: Statistik for to gennemsnit, (7.7-7.8,8.1-8.5) Per Bruun Brockhoff
Kursus 02402 Introduktion til Statistik Forelæsning 7: Kapitel 7 og 8: Statistik for to gennemsnit, (7.7-7.8,8.1-8.5) Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220 Danmarks
Module 12: Mere om variansanalyse
Module 12: Mere om variansanalyse 12.1 Parreded observationer.................. 1 12.2 Faktor med 2 niveauer (0-1 variabel)......... 3 12.3 Tosidig variansanalyse med tilfældig virkning..... 9 12.3.1 Uafhængighedsbetragtninger..........
Løsning til eksamensopgaven i Basal Biostatistik (J.nr.: 1050/06)
Afdeling for Biostatistik Bo Martin Bibby 23. november 2006 Løsning til eksamensopgaven i Basal Biostatistik (J.nr.: 1050/06) Vi betragter 4699 personer fra Framingham-studiet. Der er oplysninger om follow-up
Modul 11: Simpel lineær regression
Forskningsenheden for Statistik ST01: Elementær Statistik Bent Jørgensen Modul 11: Simpel lineær regression 11.1 Regression uden gentagelser............................. 1 11.1.1 Oversigt....................................
Statistik II Lektion 3. Logistisk Regression Kategoriske og Kontinuerte Forklarende Variable
Statistik II Lektion 3 Logistisk Regression Kategoriske og Kontinuerte Forklarende Variable Setup: To binære variable X og Y. Statistisk model: Konsekvens: Logistisk regression: 2 binære var. e e X Y P
1. Lav en passende arbejdstegning, der illustrerer samtlige enkeltobservationer.
Vejledende besvarelse af hjemmeopgave Basal statistik, efterår 2008 En gruppe bestående af 45 patienter med reumatoid arthrit randomiseres til en af 6 mulige behandlinger, nemlig placebo, aspirin eller
Opgave I II III IV V VI Spørgsmål (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) Svar 5 4 4 2 3 1 1 5 4 1
Danmarks Tekniske Universitet Side 1 af 18 sider. Skriftlig prøve: 1. juni 2005 Kursus navn og nr: Introduktion til Statistik, 02402 Tilladte hjælpemidler: Alle sædvanlige Dette sæt er besvaret af (navn)
Kvantitative Metoder 1 - Forår 2007. Dagens program
Dagens program Hypoteser: kap: 10.1-10.2 Eksempler på Maximum likelihood analyser kap 9.10 Test Hypoteser kap. 10.1 Testprocedure kap 10.2 Teststørrelsen Testsandsynlighed 1 Estimationsmetoder Kvantitative
Økonometri lektion 5 Multipel Lineær Regression. Inferens Modelkontrol Prædiktion
Økonometri lektion 5 Multipel Lineær Regression Inferens Modelkontrol Prædiktion Multipel Lineær Regression Data: Sæt af oservationer (x i, x i,, x ki, y i, i,,n y i er den afhængige variael x i, x i,,
Program. Logistisk regression. Eksempel: pesticider og møl. Odds og odds-ratios (igen)
Faculty of Life Sciences Program Logistisk regression Claus Ekstrøm E-mail: [email protected] Odds og odds-ratios igen Logistisk regression Estimation og inferens Modelkontrol Slide 2 Statistisk Dataanalyse
Matematik A. Højere handelseksamen
Matematik A Højere handelseksamen hhx131-mat/a-705013 Mandag den 7. maj 013 kl. 9.00-14.00 Matematik A Prøven består af to delprøver. Delprøven uden hjælpemidler består af opgave 1 til 5 med i alt 5 spørgsmål.
Skriftlig Eksamen Kombinatorik, sandsynlighed og randomiserede algoritmer (DM528)
Skriftlig Eksamen Kombinatorik, sandsynlighed og randomiserede algoritmer (DM528) Institut for Matematik & Datalogi Syddansk Universitet Mandag den 3 Januar 2011, kl. 9 13 Alle sædvanlige hjælpemidler
UNDERVISNINGSEFFEKT-MODELLEN 2006 METODE OG RESULTATER
UNDERVISNINGSEFFEKT-MODELLEN 2006 METODE OG RESULTATER Undervisningseffekten udregnes som forskellen mellem den forventede og den faktiske karakter i 9. klasses afgangsprøve. Undervisningseffekten udregnes
Tema. Dagens tema: Indfør centrale statistiske begreber.
Tema Dagens tema: Indfør centrale statistiske begreber. Model og modelkontrol Estimation af parametre. Fordeling. Hypotese og test. Teststørrelse. konfidensintervaller Vi tager udgangspunkt i Ex. 3.1 i
