Eksamen i Matematik F2 d. 19. juni Opgave 2. Svar. Korte svar (ikke fuldstændige)
|
|
|
- Jesper Damgaard
- 7 år siden
- Visninger:
Transkript
1 Eksamen i Matematik F2 d. 9. juni 28 Korte svar (ikke fuldstændige Opgave Find realdelen, Re z, og imaginærdelen, Im z, for følgende værdier af z, a z = 2 i b z = i i c z = ln( + i Find realdelen, Re z, og imaginærdelen, Im z, for følgende værdier af z, a Re z = 2/5, og Im z = /5 b Re z = exp( π/2, og Im z = c Re z = ln( 2, og Im z = π/4 Opgave 2 Find alle singulariteter og bestem ordenen af eventuelle poler for følgende udtryk a b c (z 2 4z ln(z z z sin z a (z 2 4z = (z 3 3 (z 3 Heraf aflæses direkte, at der er poler af orden 3 i z = og z = 3. Side af 6
2 b c Opgave 3 ln(z z Vi ved at ln(z har et forgreningspunkt for z = og nævneren er analytisk i dette punkt, derfor vil det samlede udtryk også have et forgreningspunkt i z =. Vi tjekker nu punktet z =, hvor nævneren er lig. Vi definerer en ny variabel ξ = z, og ser på grænsen ξ. ln(z z = ln(ξ + ξ ξ Dvs. vi har en hævelig singularitet for z =. L Hospital = lim ξ ξ + = z sin z Udtrykket har singulære punkter der hvor z = sin z. Vi finder en pol for z =. Polen er af 3. orden idet z sin z = ( z3 z5 3! 5! +... Find Laurent-rækkerne omkring punkterne z for funktionerne a b f(z = f(z = sinh z (z iπ, hvor z = iπ ez z i, hvor z = i a Vi foretager et variabelskifte til ξ = z iπ og får derved sinh z (z iπ = i sin(iξ = i ξ ξ k= ( k (iξ2k+ (2k +! = ξ ( 2k ξ 2k+ (2k +! = k= b Ved en simpel omskrivning findes rækken på følgende vis f(z = ez z i = ei e z i z i = Side 2 af 6 ei z i (z i k k= k! k= (z iπ 2k (2k +!
3 Opgave 4 Udregn følgende integrale ved kontourintegration i den komplekse plan 2π Foretager substitutionen z = e iθ og får Opgave 5 2π e iθ cos(θ dθ = 2i e iθ cos(θ dθ ( z + z dz = π Benyt et passende valg af kurveintegraler i den komplekse plan til at vise at principalværdien af følgende integrale (langs den reelle akse antager værdien π/ 3, x 3 + dx Husk at argumentere for værdien af integralet langs de valgte kurver. Du får muligvis brug for følgende værdier cos(π/6 = sin(π/3 = 3/2 og cos(π/3 = sin(π/6 = /2. Vi lukker integralet langs en halvcirkel i den øvre halvplan. Den kurve bidrager ikke til integrationen da for store værdier af R = z vil zf(z R/R 3 R. Integranden har simple poler i z =, z = exp(iπ/3 og z = exp( iπ3. Dvs. vi har en simpel pol på integrationsvej i z = om hvilken vi lægger en lille halvcirkel H ɛ. Vi har derfor, at P x 3 + dx + H ɛ x 3 + dx = 2πi Res(eiπ/3 Hvilket igen giver, at P x 3 + dx = 2πi Res(eiπ/3 + πi Res( = = = π 3 πi ( + e iπ/3 ( + e iπ/3 + 2πi (e iπ/3 + (e iπ/3 e iπ/3 πi cos(π/3 + πe πi/6 2 cos(π/6 sin(π/3 Vi har her benyttet, at cos(π/6 = sin(π/3 = 3/2 og cos(π/3 = /2. Side 3 af 6
4 Opgave 6 Benyt laplacetransformationen til at løse følgende ligning d 4 u(t dt 4 u(t =, når u ( =, u ( =, u ( = og u( =. Benyt laplacetransformationen på begge sider af udtrykket, og vi får û(s = s 3 (s 4 = s 3 (s (s + (s i(s + i, Vi beregner residuerne af de fire simple poler og får fra den inverse laplacetransformation, at u(t = (cosh(t + cos(t 2 Opgave 7 Vis at følgende integrale antager den givne værdi ved hjælp af kontourintegration i den komplekse plan 2π dx = (x Angiv en passende integrationsvej. Hint: vis at summen af residuet/residuerne af integrandens singulære punkt(er er /9 exp(2πi/3, og benyt evt. slutteligt, at sin(2π/3 = 3/2 til at udregne værdien af integralet. Integranden har en pol af orden 3 i z = e iπ, og vi får her, at Res( = d 2 ( lim 2! z e iπ dz 2 (z + 3 f(z = d 2 lim (z 2/3 2! z e iπ dz 2 = /9 exp(2πi/3 Im Integrationsvej. Integralet, vi er interesseret i, udregnes langs den øvre side af opskæringslinien Γ R (x + l 3 dx = z 2/3 (z + 3 dz For at bruge Cauchys sætning indfører vi ekstra integrationsveje som hjælp til at udregne integralet, en langs den nedre side af opskæringslinien l 2, en langs en cirkel Γ ε l l 2 Re Side 4 af 6
5 i uendelig Γ R og en langs en lille halvcirkel omkring venstre side af origo Γ ɛ. Vi ser at integrationen langs den ydre cirkel ikke bidrager til integralet idet f(z dz Γ R Vi har her brugt, at (for alle z på Γ R 2πR max f(z R. z Γ R zf(z R R(R 2/3 /R 2 = R /3 R og at nævneren i integranden for store radier er: + R 2 R 2. Sagt i ord, så er integralet mindre end eller lig med maksimumsværdien af integranden langs integrationsvejen ganget med længden af integrationsvejen, som er 2πR. Da maksimumsværdien går hurtigere mod nul end længden af integrationsvejen vil integralet være nul. På lignende vis, ser vi nu, at bidraget fra Γ ɛ er nul når radius, ɛ, går mod nul, idet (for alle z på Γ ɛ f(z dz Γ ɛ πɛ max f(z ɛ z Γ ɛ zf(z ɛ ɛ(ɛ 2/3 = ɛ 5/3 ɛ Vi har her benyttet, at nævneren i integranden for små radier: + ɛ 2. I grænserne for hhv. store og små radier på de cirkulære veje kan vi se bort fra Γ ɛ og Γ R, og derfor får vi, at ( f(z dz = f(z dz = 2πi l +Γ R +l 2 +Γ ε l +l 2 /9 exp(2πi/3 Integralet langs l 2 svarer til at integrere x fra uendelig til nul, men bemærk, at vi ikke kan krydse opskæringslinien, og derfor vil x langs l 2 antage værdien e 2πi x, som indsættes i integranden, og vi får derved f(z dz = l +l 2 (x + 3 dx + Det skal nu være lig summen af residuerne Vi får nu ( e 4πi/3 (xe 2πi 2/3 (x + 3 dx = ( e 4πi/3 dx = 2πi (x + 3 ( 2πi (x + 3 dx = 9 e2πi/3 e 4πi/3 = Da sin(2π/3 = 3/2 har vi slutteligt 2π dx = (x Side 5 af 6 ( 9 e2πi/3 2πi/9 e 2πi/3 e 2πi/3 = π 9 sin(2π/3 (x + 3 dx
6 Opgave 8 Benyt laplacetransformationen til at løse følgende differentialligning for u(t, du(t dt = 2 t u(t e (t t dt med startbetingelsen u( =. Vi kan enten direkte anvende laplacetransformationen eller benytte udtrykket for laplacetransformationen af et foldningsintegrale hvilket giver, at sû(s = 2 û(s + s, û(s = s + (s + 2(s. Fra den inverse laplacetransformation fås endeligt, at u(t = 3 e 2t et Side 6 af 6
Svar til eksamen i Matematik F2 d. 23. juni 2016
Svar til eksamen i Matematik F d. 3. juni 06 FORBEHOLD FOR FEJL! Bemærk, i modsætning til herunder, så skal det i besvarelsen fremgå tydeligt, hvordan polerne ndes og hvordan de enkelte residuer udregnes.
Kortfattet svar til eksamen i Matematik F2 d. 21. juni 2017
Kortfattet svar til eksamen i Matematik F2 d. 2. juni 27 Opgave Bestem for følgende tilfælde om en funktion f(z) af z = x + iy er analytisk i dele af den komplekse plan, hvis den har real del u(x, y) og
Besvarelse til eksamen i Matematik F2, 2012
Besvarelse til eksamen i Matematik F2, 202 Partiel besvarelse - har ikke inkluderet alle detaljer! Med forbehold for tastefejl. Opgave Find og bestem typen af alle singulariteter for følgende funktioner:
Løsningsforslag til opgavesæt 5
Matematik F Matematik F Løsningsforslag til opgavesæt 5 Opgave : Se kursushjemmesiden. Opgave : a) π dθ 5 + 4 sin θ = e iθ, = ie iθ dθ, dθ = i sin θ = eiθ e iθ i = i(5 + 4( / )) = i = + 5i Integranden
Matematik F2 Opgavesæt 6
Opgave 4: Udtryk funktionen f(θ) = sin θ ved hjælp af Legendre-polynomierne på formen P l (cos θ). Dvs. find koefficienterne a l i ekspansionen f(θ) = a l P l (cos θ) l= Svar: Bemærk, at funktionen er
Formelsamling - MatF2. Therkel Zøllner og Amalie Christensen 27. juni 2009
Formelsamling - MatF2 Therkel Zøllner og Amalie Christensen 27. juni 2009 1 Indhold 1 Kompleks variabel teori 3 1.1 Komplekse funktioner 825-830........................... 3 1.2 Powerserier af komplekse
(c) Opskriv den reelle Fourierrække for funktionen y(t) fra (b), og afgør dernæst om y(t) er en lige eller ulige funktion eller ingen af delene.
MATEMATIK 3 EN,MP 4. februar 2016 Eksamenopgaver fra 2011 2016 (jan. 2016) Givet at 0 for 0 < t < 1 mens e (t 1) cos(7(t 1)) for t 1, betragt da begyndelsesværdiproblemet for t > 0: y (t) + 2y (t) + 50y(t)
z j 2. Cauchy s formel er værd at tænke lidt nærmere over. Se på specialtilfældet 1 dz = 2πi z
Matematik F2 - sæt 3 af 7 blok 4 f(z)dz = 0 Hovedemnet i denne uge er Cauchys sætning (den der står i denne sides hoved) og Cauchys formel. Desuden introduceres nulpunkter og singulariteter: simple poler,
Besvarelser til Calculus Ordinær eksamen - Efterår - 8. Januar 2016
Besvarelser til Calculus Ordinær eksamen - Efterår - 8. Januar 16 Mikkel Findinge Bemærk, at der kan være sneget sig fejl ind. Kontakt mig endelig, hvis du skulle falde over en sådan. Dette dokument har
Besvarelser til Calculus Ordinær eksamen - Forår - 6. Juni 2016
Besvarelser til Calculus Ordinær eksamen - Forår - 6. Juni 16 Mikkel Findinge Bemærk, at der kan være sneget sig fejl ind. Kontakt mig endelig, hvis du skulle falde over en sådan. Dette dokument har udelukkende
Kompleks Funktionsteori
Kompleks Funktionsteori Formelræs Holomorfe funktioner Sætning. (Caucy-Riemans ligninger). Funktionen f : G C, f = u+iv er holomorf i z 0 = x 0 + iy 0 hvis og kun hvis i punktet (x 0, y 0 ). du dx = dv
Besvarelser til Calculus Ordinær Eksamen Januar 2019
Besvarelser til Calculus Ordinær Eksamen - 14. Januar 19 Mikkel Findinge Bemærk, at der kan være sneget sig fejl ind. Kontakt mig endelig, hvis du skulle falde over en sådan. Dette dokument har udelukkende
Besvarelser til Calculus Ordinær Eksamen Juni 2019
Besvarelser til Calculus Ordinær Eksamen - 14. Juni 2019 Mikkel Findinge Bemærk, at der kan være sneget sig fejl ind. Kontakt mig endelig, hvis du skulle falde over en sådan. Dette dokument har udelukkende
Matematik F2 Opgavesæt 2
Opgaver uge 2 I denne uge kigger vi nærmere på Cauchy-Riemann betingelserne, potensrækker, konvergenskriterier og flertydige funktioner. Vi skal også se på integration langs en ve i den komplekse plan.
Note om Laplace-transformationen
Note om Laplace-transformationen Den harmoniske oscillator omskrevet til et ligningssystem I dette opgavesæt benyttes laplacetransformationen til at løse koblede differentialligninger. Fordelen ved at
Besvarelser til Calculus Ordinær Eksamen Juni 2017
Besvarelser til Calculus Ordinær Eksamen - 12. Juni 217 Mikkel Findinge Bemærk, at der kan være sneget sig fejl ind. Kontakt mig endelig, hvis du skulle falde over en sådan. Dette dokument har udelukkende
Besvarelser til Calculus Ordinær Eksamen - 3. Januar 2017
Besvarelser til Calculus Ordinær Eksamen - 3. Januar 17 Mikkel Findinge Bemærk, at der kan være sneget sig fejl ind. Kontakt mig endelig, hvis du skulle falde over en sådan. Dette dokument har udelukkende
Besvarelser til Calculus Ordinær Eksamen Juni 2018
Besvarelser til Calculus Ordinær Eksamen - 5. Juni 08 Mikkel Findinge Bemærk, at der kan være sneget sig fejl ind. Kontakt mig endelig, hvis du skulle falde over en sådan. Dette dokument har udelukkende
SUPPLERENDE OPGAVER TIL KOMPLEKS FUNKTIONSTEORI F2005
SUPPLERENDE OPGAVER TIL KOMPLEKS FUNKTIONSTEORI F2005 0. maj, 2005 version nr. 8 JØRGEN VESTERSTRØM Indledende bemærkninger De foreliggende opgaver udgør et supplement til lærebogens opgaver. Afsnitsnummereringerne
Eksamen i Calculus. 14. juni f (x, y, z) = 1 + x 2 + y 2. Hele rummet uden z aksen
Eksamen i Calculus Første Studieår ved Det Tekniske Fakultet for IT og Design, Det Sundhedsvidenskabelige Fakultet samt Det Ingeniør- og Naturvidenskabelige Fakultet 14. juni 019 Opgave 1 (6 point) En
Eksamen i Calculus. 14. juni f (x, y, z) = 1 + x 2 + y 2. x 2 + y 2 1 Hele rummet uden z aksen
Eksamen i Calculus Første Studieår ved Det Tekniske Fakultet for IT og Design, Det Sundhedsvidenskabelige Fakultet samt Det Ingeniør- og Naturvidenskabelige Fakultet 14. juni 19 Opgave 1 (6 point) En funktion
Noter til MatF2 på KU (Matematik for Fysikere 2)
Noter til MatF2 på KU (Matematik for Fysikere 2) af Nikolai Plambech Nielsen, LPK33, Version.0 8. juni 206 Resumé Dette notesæt er udarbejdet til kurset Matematik for Fysikere 2 (Forkortet MatF2). Bogen,
Besvarelser til Calculus Ordinær Eksamen Juni 2017
Besvarelser til Calculus Ordinær Eksamen - 12. Juni 2017 Mikkel Findinge Bemærk, at der kan være sneget sig fejl ind. Kontakt mig endelig, hvis du skulle falde over en sådan. Dette dokument har udelukkende
MATEMATIK 11 Eksamensopgaver Juni 1995 Juni 2001, 4. fjerdedel
Juni 2000 MATEMATIK 11 Eksamensopgaver Juni 1995 Juni 2001, 4. fjerdedel Opgave 1. (a) Find den fuldstændige løsning til differentialligningen y 8y + 16y = 0. (b) Find den fuldstændige løsning til differentialligningen
Besvarelser til Calculus Ordinær Eksamen - 5. Januar 2018
Besvarelser til Calculus Ordinær Eksamen - 5. Januar 18 Mikkel Findinge Bemærk, at der kan være sneget sig fejl ind. Kontakt mig endelig, hvis du skulle falde over en sådan. Dette dokument har udelukkende
Analyse 1, Prøve 2 Besvarelse
Københavns Universitet Prøve ved Det naturvidenskabelige Fakultet maj Analyse, Prøve Besvarelse Opgave (3%) (a) (%) Bestem mængden af x R for hvilke rækken ( + (x) n ) er konvergent og angiv sumfunktionen
DesignMat Lineære differentialligninger I
DesignMat Lineære differentialligninger I Preben Alsholm Uge 9 Forår 2010 1 Lineære differentialligninger af første orden 1.1 Normeret lineær differentialligning Normeret lineær differentialligning En
MATEMATIK 11 Eksamensopgaver Juni 1995 Juni 2001, 3. fjerdedel
MATEMATIK Eksamensopgaver Juni 995 Juni 200, 3. fjerdedel August 998 Opgave. Lad f : R \ {0} R betegne funktionen givet ved f(x) = ex x for x 0. (a) Find eventuelle lokale maksimums- og minimumspunkter
Vektorfelter langs kurver
enote 25 1 enote 25 Vektorfelter langs kurver I enote 24 dyrkes de indledende overvejelser om vektorfelter. I denne enote vil vi se på vektorfelternes værdier langs kurver og benytte metoder fra enote
Nøgleord og begreber Komplekse tal Test komplekse tal Polære koordinater Kompleks polarform De Moivres sætning
Oversigt [S] App. I, App. H.1 Nøgleord og begreber Komplekse tal Test komplekse tal Polære koordinater Kompleks polarform De Moivres sætning Test komplekse tal Komplekse rødder Kompleks eksponentialfunktion
Eksamen i Calculus Fredag den 8. januar 2016
Eksamen i Calculus Fredag den 8. januar 2016 Første Studieår ved Det Teknisk-Naturvidenskabelige Fakultet og Det Sundhedsvidenskabelige Fakultet Nærværende eksamenssæt består af 7 nummererede sider med
To find the English version of the exam, please read from the other end! Eksamen i Calculus
To find the English version of the exam, please read from the other end! Se venligst bort fra den engelske version på bagsiden hvis du følger denne danske version af prøven. Eksamen i Calculus Første Studieår
Idenne note giver vi et eksempel på, hvorledes det er vigtigt at holde sig
Analyse : Eulers formel Sebastian rsted 9. maj 015 Idenne note giver vi et eksempel på, hvorledes det er vigtigt at holde sig for øje, hvor de matematiske resultater kommer fra, og hvad de baseres på;
Notesæt - Eksempler på polær integration
Notesæt - Eksempler på polær integration Mikkel Findinge Bemærk, at der kan være sneget sig fejl ind. Kontakt mig endelig, hvis du skulle falde over en sådan. Dette dokument forsøger blot at forklare,
Besvarelser til Calculus og Lineær Algebra Globale Forretningssystemer Eksamen - 3. Juni 2014
Besvarelser til Calculus og Lineær Algebra Globale Forretningssystemer Eksamen - 3. Juni 204 Mikkel Findinge Bemærk, at der kan være sneget sig fejl ind. Kontakt mig endelig, hvis du skulle falde over
Den homogene ligning. Vi betragter den n te ordens, homogene, lineære differentialligning. d n y dt n. an 1 + any = 0 (1.2) dt. + a1 d n 1 y dt n 1
1/7 Den homogene ligning Vi betragter den n te ordens, homogene, lineære differentialligning a 0 d n y dt n + a1 d n 1 y dt n 1 hvor a 0,..., a n R og a 0 0. Vi skriver ligningen på kort form som + + dy
MM501 forelæsningsslides
MM501 forelæsningsslides uge 37, 2010 Produceret af Hans J. Munkholm 2009 bearbejdet af Jessica Carter 2010 1 Hvad er et komplekst tal? Hvordan regner man med komplekse tal? Man kan betragte udvidelsen
Reeksamen i Calculus. Første Studieår ved Det Tekniske Fakultet for IT og Design samt Det Ingeniør- og Naturvidenskabelige Fakultet. 17.
Reeksamen i Calculus Første Studieår ved Det Tekniske Fakultet for IT og Design samt Det Ingeniør- og Naturvidenskabelige Fakultet 17. februar 2017 Dette eksamenssæt består af 11 nummererede sider med
Eksamen i Calculus. 14. juni f (x, y, z) = 1 + x 2 + y 2. x 2 + y 2 1 Hele rummet uden z aksen
Eksamen i Calculus Første Studieår ved Det Tekniske Fakultet for IT og Design, Det Sundhedsvidenskabelige Fakultet samt Det Ingeniør- og Naturvidenskabelige Fakultet 14. juni 019 Opgave 1 (6 point) En
π er irrationel Frank Nasser 10. december 2011
π er irrationel Frank Nasser 10. december 2011 2008-2011. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her. Indhold 1 Introduktion
Analyse 1, Prøve 4 Besvarelse
Københavns Universitet Prøve ved Det naturvidenskabelige Fakultet juni 2011 1 Analyse 1, Prøve 4 Besvarelse Lad Opgave 1 (50%) M = {T R 2 T er en åben trekant} og lad A : M R være arealfunktionen, dvs.
Eulers equidimensionale differentialligning
Eulers equidimensionale differentialligning Projektbesvarelse for MM501, udformet af Hans J. Munkholm Differentialligningen September-oktober 2009 For at kunne referere let og elegant gentages differentialligningen
1. Vis, at hvis realdelen af en holomorf (analytisk) funktion er konstant (på et åbent område) er funktionen konstant.
Matematik F2 - sæt 2 af 7 blok 4 f(z)dz = 0 1 I denne uge vil vi studere Cauchy-Riemann betingelserne, potensrækker, konvergenskriterier og flertydige funktioner. Vi skal også se på integration langs en
MM502+4 forelæsningsslides
MM502+4 forelæsningsslides uge 11+12 1, 2009 Produceret af Hans J. Munkholm, delvis på baggrund af lignende materiale udarbejdet af Mikael Rørdam 1 I nærværende forbindelse er 11 + 12 23 1 Egenskaber for
OPGAVER 1. Approksimerende polynomier. Håndregning
OPGAVER 1 Opgaver til Uge 4 Store Dag Opgave 1 Approksimerende polynomier. Håndregning a) Find for hver af de følgende funktioner deres approksimerende polynomiumer af første og anden grad med udviklingspunkt
Eksamen i Calculus. Første Studieår ved Det Teknisk-Naturvidenskabelige Fakultet og Det Sundhedsvidenskabelige Fakultet. 6.
Eksamen i Calculus Første Studieår ved Det Teknisk-Naturvidenskabelige Fakultet og Det Sundhedsvidenskabelige Fakultet 6. juni 16 Dette eksamenssæt består af 1 nummererede sider med 14 afkrydsningsopgaver.
DesignMat Den komplekse eksponentialfunktion og polynomier
DesignMat Den komplekse eksponentialfunktion og polynomier Preben Alsholm Uge 8 Forår 010 1 Den komplekse eksponentialfunktion 1.1 Definitionen Definitionen Den velkendte eksponentialfunktion x e x vil
Impedans. I = C du dt (1) og en spole med selvinduktionen L
Impedans I et kredsløb, der består af andre netværkselementer end blot lække (modstande) og kilder vil der ikke i almindelighed være en simpel proportional, tidslig sammenhæng mellem strøm og spænding,
Løsninger til eksamensopgaver på A-niveau 2019 ( ) ( )
Løsninger til eksamensopgaver på A-niveau 019 1. maj 019: Delprøven UDEN hjælpemidler 1. maj 019 opgave 1: Man kan godt benytte substitutionsmetoden, lige store koefficienters metode eller determinantmetoden,
Prøveeksamen i Calculus
Prøveeksamen i Calculus Første Studieår ved Det Teknisk-Naturvidenskabelige Fakultet og Det Sundhedsvidenskabelige Fakultet Marts 6 Dette eksamenssæt består af 9 nummererede sider med 4 afkrydsningsopgaver.
Eksamen i Mat F, april 2006
Eksamen i Mat F, april 26 Opgave Lad F være et vektorfelt, givet i retvinklede koordinater som: Udregn F og F: F x F = F x i + F y j + F z k = F y = z 2 F z xz y 2 F = F x + F y + F z = + + x. F = F z
Eksamen i Signalbehandling og matematik
Opgave. (%).a. Figur og afbilleder et diskret tid signal [n ] og dets DTFT. [n] bruges som input til et LTI filter med en frekvens amplitude respons som vist på figur. Hvilket af de 4 output signaler (y
Eksamen 2014/2015 Mål- og integralteori
Eksamen 4/5 Mål- og integralteori Københavns Universitet Institut for Matematiske Fag Formalia Eksamensopgaven består af 4 opgaver med ialt spørgsmål Ved bedømmelsen indgår de spørgsmål med samme vægt
Reeksamen i Calculus
Reeksamen i Calculus Første Studieår ved Det Tekniske Fakultet for IT og Design, Det Sundhedsvidenskabelige Fakultet samt Det Ingeniør- og Naturvidenskabelige Fakultet 0. februar 019 Dette eksamenssæt
Opgave 1 Opskriv følgende vinkler i radianer 180, 90, 135, 270, 60, 30.
Opgaver Polære koordinater Opgave 1 Opskriv følgende vinkler i radianer 180, 90, 15, 70, 60, 0. Opgave Bestem sin π Opgave. Et punkt p i xy-planen er givet ved de kartesiske koordinater,. Bestem p s polære
Københavns Universitet, Det naturvidenskabelige Fakultet. Afleveringsopgave 1
Københavns Universitet, Det naturvidenskabelige Fakultet 1 Lineær Algebra (LinAlg) Afleveringsopgave 1 Eventuelle besvarelser laves i grupper af - 3 personer og afleveres i to eksemplarer med 3 udfyldte
Projekt 4.6 Løsning af differentialligninger ved separation af de variable
Projekt 4.6 Løsning af differentialligninger ved separation af de variable Differentialligninger af tpen d hx () hvor hx ()er en kontinuert funktion, er som nævnt blot et stamfunktionsproblem. De løses
Matematik F2 Opgavesæt 1
Opgaer uge 1 I denne uge er temaet komplekse tal og komplekse funktioner af en kompleks ariabel. De første opgaer skulle gerne øge jeres fortrolighed med komplekse tal. I kan med fordel repetere de basale
x 2 + y 2 dx dy. f(x, y) = ln(x 2 + y 2 ) + 2 1) Angiv en ligning for tangentplanen til fladen z = f(x, y) i punktet
Eksamensopgaver fra Matematik Alfa 1 Naturvidenskabelig Kandidateksamen August 1999. Matematik Alfa 1 Opgave 1. Udregn integralet 1 1 y 2 (Vink: skift til polære koordinater.) Opgave 2. Betragt funktionen
DesignMat Uge 1 Gensyn med forårets stof
DesignMat Uge 1 Gensyn med forårets stof Preben Alsholm Efterår 2010 1 Hovedpunkter fra forårets pensum 11 Taylorpolynomium Taylorpolynomium Det n te Taylorpolynomium for f med udviklingspunkt x 0 : P
2. Fourierrækker i en variabel
.1. Fourierrækker i en variabel I Kapitel II 7 blev der indført, dels funktionsrummene L p (X, µ) (mere udførligt skrevet L p (X, E, µ)), dels rummene L p (X, µ), der fås af L p (X, µ) ved at funktioner
To find the English version of the exam, please read from the other end! Eksamen i Calculus
To find the English version of the exam, please read from the other end! Se venligst bort fra den engelske version på bagsiden hvis du følger denne danske version af prøven. Eksamen i Calculus Første Studieår
Momenter som deskriptive størrelser. Hvad vi mangler fra onsdag. Momenter for sandsynlighedsmål
Hvad vi mangler fra onsdag Momenter som deskriptive størrelser Sandsynlighedsmål er komplicerede objekter de tildeler numeriske værdier til alle hændelser i en σ-algebra. Vi har behov for simplere, deskriptive
Heisenbergs usikkerhedsrelationer. Abstrakt. Hvorfor? Funktionsrum. Nils Byrial Andersen Institut for Matematik. Matematiklærerdag 2013
Heisenbergs usikkerhedsrelationer Nils Byrial Andersen Institut for Matematik Matematiklærerdag 013 1 / 17 Abstrakt Heisenbergs usikkerhedsrelationer udtrykker at man ikke på samme tid både kan bestemme
INSTITUT FOR MATEMATIK OG DATALOGI. TIDLIGERE EKSAMENSOPGAVER MM501 Calculus I, MM502 Calculus II Januar 2006 juni 2010
INSTITUT FOR MATEMATIK OG DATALOGI TIDLIGERE EKSAMENSOPGAVER MM501 Calculus I, MM502 Calculus II Januar 2006 juni 2010 Forord Denne opgavesamling indeholder samtlige eksamensopgaver, der har været stillet
Matematik F2 - sæt 1 af 7, f(z)dz = 0 1
f(z)dz = 0 1 I denne uge er det meningen, at I skal blie fortrolige med komplekse tal og komplekse funktioner af en kompleks ariabel. Vi skal kigge nærmere på, hornår komplekse funktioner er differentiable
Lineære 1. ordens differentialligningssystemer
enote enote Lineære ordens differentialligningssystemer Denne enote beskriver ordens differentialligningssystemer og viser, hvordan de kan løses enoten er i forlængelse af enote, der beskriver lineære
Besvarelse, Eksamen Analyse 1, 2013
Københavns Universitet Prøve ved Det naturvidenskabelige Fakultet juni 23 Besvarelse, Eksamen Analyse, 23 Opgave Lad, for n N, funktionen f n : [, ) R være givet ved NB. Trykfejl. Burde være x. f n (x)
Opgaver til f(z) = 1 z 4 1, g(z) = 1
1.17 Opgaver til 1. 1 1.1. Vis, at f(z) = er vilkårligt ofte differentiabel i C \ {, 1}, og z(1 z) find et udtryk for f (n) (z) for alle n. (Vink. Skriv f(z) = 1 z + 1 1 z ). 1.2. Beskriv billedkurverne
MATEMATIK 3 EN,MP 28. august 2014 Oversigt nr. 1
EN,MP 28. august 2014 Oversigt nr. 1 Litteratur: I Matematik 3 bruger vi (igen) i efteråret 2014 [K] E. Kreyzig: Advanced engineering mathematics, 10. udg., Wiley, 2011. Beskrivelse: Kurset vil handle
Noter om Komplekse Vektorrum, Funktionsrum og Differentialligninger LinAlg 2004/05-Version af 16. Dec.
Noter om Komplekse Vektorrum, Funktionsrum og Differentialligninger LinAlg 2004/05-Version af 16. Dec. 1 Komplekse vektorrum I defininitionen af vektorrum i Afsnit 4.1 i Niels Vigand Pedersen Lineær Algebra
Vektoranalyse INDLEDNING. Indhold. 1 Integraltricks. Jens Kusk Block Jacobsen 21. januar 2008
Vektoranalyse Jens Kusk Block Jacobsen 21. januar 2008 INLENING ette er en opsamling af ting, jeg synes er gode at have ifbm vektoranalyse som præsenteret i kurset VEKANAE07 ved IMF på AU. Noten er dels
Komplekse tal og rækker
Komplekse tal og rækker John Olsen 1 Indledning Dette sæt noter er forelæsningsnoter til foredraget Komplekse tal og rækker. Noterne er beregnet til at blive brugt sammen med foredraget. I afsnit 2 bliver
