Matematisk modellering og numeriske metoder. Lektion 17

Størrelse: px
Starte visningen fra side:

Download "Matematisk modellering og numeriske metoder. Lektion 17"

Transkript

1 Mtemtisk modellering og numeriske metoder Lektion 1 Morten Grud Rsmussen 8. november, 1 1 Numerisk integrtion og differentition [Bogens fsnit 19. side 84] 1.1 Grundlæggende om numerisk integrtion Vi vil i det følgende gennemgå fem tilgnge til numeriske pproksimtion f bestemte integrler, også kldet numerisk integrtion. Numerisk integrtion er typisk f interesse i to tilfælde, nemlig når vi ikke kn finde en stmfunktion til integrnten, eller når vi ikke kender et nlytisk funktionsudtryk, men kun kender funktionsværdien i et begrænset ntl punkter. 1. Midtpunktsreglen Den første metode, vi vil se på, er nturligvis også den mest primitive. Antg, t vi er interesseret i en numerisk løsning f f(x) dx. Metoden går helt simpelt ud på t dele intervllet I = [, b], der integreres over, op i n delintervller I i = [, x i ], i = 1,..., n f længde h = b og så pproksimere integrlet over de enkelte n delintervller I i ved t gnge intervllængden I i = h med funktionsværdien f( + h ) f integrnten midt i intervllet I n. Her er x =, x n = b og x i = + h for i = 1,..., n. Det smlede integrl er så pproksimeret f summen f pproksimtionerne over disse delintervller, og vi får ltså f(x) dx h f( + h b ), hvor h = n. (1) Midtpunktsreglen kn tolkes på følgende måde. Funktionen p f( + h ) kn opfttes som en nulgrdspolynomiumspproksimtion f f. Så er x i p dx = hf( + h ), og (1) er ltså summen f integrlerne over stykkevise nulgrdspolynomiumspproksimtioner f f. 1

2 1. Trpezreglen I smme ånd som ovenfor kn vi finde en førstegrdspolynomiumspproksimtion p 1 f f på I i, hvis vi i stedet for midtpunktet f( + h) kender værdierne f(x i 1) og f(x i ) f f i endepunkterne f I n : p 1 (x) = f( ) + f() f(x i ) (x ) x i (her fundet vh. Newtons divideret differens-metode med x = og x 1 = x i ), som integrerer til xi p 1 (x) dx = h (f() + f(x i )), hvor h = x i. Trpezreglen er ltså følgende pproksimtion: f(x) dx h ( f(xi 1 ) + f(x i ) ) = h ( ) n 1 f() + f(b) + h f(x i ), () hvor sidste omskrivning følger f en simpel omorgnisering. Det kn vises, t fejlen i denne pproksimtion er ε t n = b 1 h f (x I ), () for et pssende vlg f x I I = [, b], hvor vi understreger, t n et intet hr med polynomiumsgrden t gøre, men henviser til ntllet f delintervller I i. Som for polynomiumsinterpoltionerne kn vi ltså finde øvre og nedre grænser for vores fejl ved t finde mksimum og minimum f f på I. Er det f den ene eller nden grund ikke muligt t finde sådnne grænser, kn mn, hvis n er et lige tl, benytte følgende formel til t estimere fejlen: 1.4 Simpsons regel ε t n 1 (J n t J t n ), hvor Jn t = h ( ) n 1 f() + f(b) + h f(x i ). (4) Næste nturlige skridt er t pproksimere f på I i med et ndengrdspolynomium p gennem f( ), f( + h) og f(x i). Den ihærdige læser kn selv finde p (med en vlgfri metode fr lektion 1) og integrere ndengrdspolynomiet. Den dovne kn ånde lettet op, læne sig tilbge, og få det hele serveret: xi p (x) dx = h ( f(xi 1 ) + 4f( + h ) + f(x i) ), hvor h = x i. Anvendes dette på lle delintervller, kldes resulttet Simpsons regel og ser ud som følger: f(x) dx h ( f(xi 1 ) + 4f( + h ) + f(x i) ) = h ( f(x ) + f(x n ) ) + h f(x i h) + h n 1 f(x i ). Det bemærkes, t bogen ikke er konsekvent med, om den tæller målepunkter (ltså steder, hvor f skl kendes) eller delintervller, og t deres formel f den grund ser lidt nderledes ud.

3 1. Præcisionsgrd Inden vi diskuterer fejlvurderinger i forbindelse med Simpsons regel, vil vi indføre begrebet præcisionsgrd f en metode til numerisk integrtion. For t en metode kn klde sig en numerisk integrtionsmetode, skl den kunne bestemme integrlet f en konstnt funktion også kendt som et nultegrdspolynomium uden fejl. Vi kn derfor for en given numerisk integrtionsmetode lde N betegne det største hele tl, sådn t metoden nvendt på et vilkårligt N tegrdspolynomium over et vilkårligt intervl giver det rigtige resultt. Dette tl kldes præcisionsgrden. Det er nemt t se, t midtpunktsreglen hr præcisionsgrd (mn kn kun være sikker på t få det rigtige resultt, hvis integrnten er et nultegrdspolynomium) og t trpezreglen hr præcisionsgrd 1 (trpezreglen giver det rigtige integrl for lle førstegrdspolynomier, men ikke for lle ndengrdspolynomier). Det er oplgt t gætte på, t Simpsons regel hr præcisionsgrd, og det er d også sndt, t ndengrdspolynomier integreres korrekt med Simpsons regel. Ld nu f være et tredjegrdspolynomium. Vi kn skrive f som f = p + g, hvor p er ndengrdsinterpoltionspolynomiet gennem f( ), f( + h) og f(x i) mens g er tredjegrdspolynomiet gennem et vilkårligt fjerde punkt x (, x i ), x + h, fr Newtons divideret differens-metode, g (x) = f[, + h, x i, x ](x ) ( x ( + h )) (x x i ). Det er nu nemt t vise, t x i g (x) dx = unset hvd f[, + h, x i, x ] er prøv evt. selv t betrgte det konkrete tilfælde = 1, x i = 1 og h =. Dette betyder, t også tredjegrdspolynomier ltid integreres korrekt med Simpsons regel, og præcisionsgrden er derfor. At Simpsons regel vh. tre målepunkter pr. delintervl og ndengrdspolynomiumsinterpoltion kn give korrekt integrtion f tredjegrdspolynomier, hænger i høj grd på, hvor de tre målepunkter er plceret i delintervllet i forhold til hinnden. Vi vil om lidt se på en metode kldet Guss-kvdrtur, som netop går ud på t optimere disse forhold. Inden d skl vi dog lige vende tilbge til et hængeprti. 1. Fejlvurderinger i Simpsons regel Ligesom præcisionsgrden i Simpsons regel ikke er men, er fejlen ved brug f Simpsons regel ikke proportionl med f (x I ) for et pssende vlg f x I [, b], men derimod ε S (b ) n = 88 h4 f (4) (x I ), () hvor n et indikerer ntllet f delintervller, som på højresiden er indkodet i værdien f h (husk igen bogens lidt nderledes nottion). Vi kn igen finde øvre og nedre grænser for fejlen ved t finde mksimum og minimum f f (4) på I = [, b]. Skulle f (4) f en eller nden grund være en problemtisk størrelse, kn mn, hvis n er et lige tl, benytte sig f følgende estimt: ε S n 1 1 (J n S J S n ),

4 hvor Jn S = h ( f(x ) + f(x n ) ) + h n 1 f(x i ) + h f(x i h) er pproksimtionen f integrlet fr Simpsons regel med n delintervller. Simpsons regel er endvidere numerisk stbil med hensyn til frunding i den forstnd, t frundingsfejl i værdierne f(x ), f(x i ) og f(x i h ), i = 1,..., n er begrænset f (b )u, hvor u er frundingsenheden, og fuldstændig ufhængig f n. 1. Guss-kvdrtur Guss-kvdrtur er som nævnt en metode, som går ud på t udnytte t præcisionsgrden fhænger f plceringen f målepunkterne. Mere specifikt foretges pproksimtionen ved f(x) dx b ( b w i f z i + + b ), for nogle særlige vægte w i og punkter z i. For n mellem og kn vægtene og punkterne flæses i følgende tbel. Antl målepunkter n punkter z i vægte w i præcisionsgrd N ± 1 4 ± ± ± ± 1 ± Det ses, t præcisionsgrden i ovenstående tbel er n 1. Dette gælder også for n > og det kn vises, t det er den højst opnåelige præcisionsgrd. Det er klrt, t vi kun kn vente, t Gusskvdrtur giver gode resultter, såfremt den pågældende integrnt ligner et polynomium. 1.8 Adptiv numerisk integrtion En metode, som tger mere hensyn til den konkrete funktion, er dptiv numerisk integrtion, som er en slgs overbygning på metoder, der som trpezreglen og Simpsons regel bserer sig på 4

5 inddeling i delintervller og som tillder estimtion f fejlen. Kernen i metoden er ltså eksempelvis Simpsons regel. Antg, t vi vil integrere en funktion f på intervllet I = [, b] og t vi ccepterer én eller nden grd f fejl, f.eks. t tolerncen T > skl være større end den bsolutte fejl ε. Vi lder J n ([c, d]) og ε n ([c, d]) betegne hhv. pproksimtionen f integrlet og fejlen på pproksimtionen over [c, d] når [c, d] er inddelt i n delintervller. Hvis vi eksempelvis nvender Simpsons regel på f over intervllet [c, d] med n = 1 og n =, så kn vi estimere ε ([c, d]) = ε S ([c, d]). Hvis den smlede bsolutte fejl skl være mindre end T, så er det tilstrækkeligt, t fejlen på hvert delintervl opfylder ε ([c, d]) b d c < T eller ε ([c, d]) < d c b T. Hvis et estimt f ε ([c, d]) er større end d c T, kn vi forbedre vores pproksimtion f integrlet b på dette delintervl ved t udregne J 4 ([c, d]) = J ([c, c+d]) + J ([ c+d, d]). Det skulle være klrt, t denne process kn fortsættes. Når vi skl udregne et integrl, begynder vi ltså med c = og d = b, udregner J 1 ([c, d]) og J ([c, d]), estimerer ε ([c, d]), og ersttter efter behov (dvs. hvis ε ([c, d]) d c T ) hhv. c og d b med c+d og gentger processen med disse vlg f c og d. Forhåbentlig opnås efter et endeligt ntl skridt med pssende hlveringer f delintervllerne en tilps fin inddeling, til t ε ([c, d]) < d ct b for lle relevnte pr f c og d, og pproksimtionen f integrlet med en tolernce mindre end T er så summen f J ([c, d]) erne for disse pr. 1.9 Eksempler Midtpunktsreglen skulle gerne være ligetil, og d den smtidig generelt er noget mindre præcis end trpezreglen, som kun kræver 1 ekstr målepunkt for smme inddeling, vil vi ikke se nærmere på midtpunktsreglen. I stedet vil vi gennemgå et eksempel på nvendelsen f trpezreglen, Simpsons regel og Guss-kvdrtur. Eksempel 1.1 (Exmple 1,,, 4 og i bogen side 8, 8, 8, 81 og 84). Vi vil numerisk beregne integrlet 1 e x dx og vurdere fejlen. Vi begynder med trpezreglen. Skriv f(x) = e x og ntg, t vi kender f(x i ) = e x i for xi = i, i =,..., 1. Vi kn d nvende trpezreglen med 1 n = 1 hvilket svrer til h =.1 og inddelingen [, 1] = 1 [, x i ]. Vi får d vh. () 1 e x dx J t 1 = h ( f(x ) + f(x n ) ) + h 9 f(x i ) = =.411, hvor J t 1 indikerer, t det er trpezreglen med n = 1. Hvis vi i smme ånd skriver ε t 1 for fejlen, så kn vi finde øvre og nedre grænser for fejlen vh. (): ε t 1 = f (x I ) hvor x I [, 1], så 1 1 mx x [,1] f (x) ε t min x [,1] f (x).

6 D f (x) = (x 1)e x og f (x) for x [, 1] er så mx f (x) = f (1) =.9 og min f (x) = f () =, x [,1] x [,1] Vi kn også estimere ε t 1 vh. (4): så.14 ε t 1.1. J t = =.448 ε t 1 1 (J t 1 J t ) = Denne fejl kn vises t være korrekt med to betydende cifre: ε t 1 = Dette vr trpezreglen. Men hvd med Simpsons regel? Med de smme kendte målepunkter x i kn vi kun klre n =, idet Simpsons regel også bruger et målepunkt midtvejs i delintervllerne. Vi får derfor h =. og: =.48. Ud fr ovenstående er det klrt, t fejlen her er mindre, selvom vi tog udgngspunkt i præcis de smme tl. Benytter vi () til t vurdere fejlen ε S fås. = mx x [,1] f (4) (x) ε S min x [,1] f (4) (x) =.. D n = er ulige, kn vi ikke benytte ε S n 1 (J 1 n J n ) til t estimere fejlen. Til gengæld kunne vi bruge () til t finde n, så vi eksempelvis hr rigtige cifre efter kommet ved t indsætte h = b ε S n b 88 ( b n ) 4 mx x [,b] f (4) (x) = 1 88n 4 1 1, og dermed n = 1, idet vi bliver nødt til t runde op. Hvis f (4) vrierer meget på intervllet [, b] kn denne vurdering dog være lt for streng, forstået på den måde, t mn kunne klre sig med et mindre n. Til sidst vil vi pproksimere integrlet vh. Guss-kvdrtur. Dette er dog ikke problemfrit, d vi nu ikke længere kn bruge vores llerede kendte x i er som målepunkter. Vi dispenserer for ntgelsen om, t vi kun kender disse, og ntger i stedet, t vi selv må bestemme, hvor vi evluerer funktionen. Hvis vi vælger n =, så skl vi ltså kende f( 1), f( 1 (1 /) ) og f ( 1 (1 + /) ) : 1 e x dx 1 ( 9 f( 1 (1 )) f(1) + 9 f( 1 (1 ))) =.481. De få målepunkter tget i betrgtning, er der her tle om en ret imponerende præcision: fejlen er.1. Hvde vi i Simpsons regel forsøgt os med n =, hvde vi fået J S =.418, og trpezreglen ville hve været endnu værre. n :

7 Eksempel 1. (Exmple i bogen side 8). Vi vil nu numerisk integrere f(x) = 1 4 πx4 cos( 1 πx) fr 4 til 1 vh. dptiv integrtion og Simpsons regel og en tolernce på T =.. Først udregnes J 1 ([, ]) =.448 og J ([, ]) = J 1 ([, 1]) + J 1 ([1, ]) = = Vi kn så estimere fejlen ε ([, ]) 1 ( ) = Altså skl vi splitte [, ] i [, 1 ] = [, 1] og [, ] = [1, ]. Vi hr så J 1([, 1]) =.194 og J 1 ([1, ]) = 1.19 og finder J ([, 1]) = J 1 ([, 1]) + J 1([ 1, 1]) =.11 og J ([1, ]) = J 1 ([1, ]) + J 1([, ]) = = 1.1. Vi kn nu estimere ε ([, 1]) 1 (J 1 ([, 1]) J 1 ([, 1])) =.1 < 1., så [, 1] mener vi ltså t hve pproksimeret tilstrækkeligt godt, mens ε ([1, ]) 1 1 (J ([1, ]) J 1 ([1, ])) = Vi splitter derfor [1, ] i [1, ] og [, ]. Så beregnes J ([1, ]) =.889 og J ([, ]) =.9 smt ε ([1, ]) =.48 < 1. og ε ([, ]) =.8 <. og vi er ltså tilfredse med lle delintervller. Vi lægger smmen og får 1 4 πx4 cos( 1πx) dx J 4 ([, 1]) + J ([1, ]) + J ([ ]) = = Numerisk differentition Vi hr llerede i forbindelse med finite difference-metoden set på forskellige numeriske pproksimtioner f differentilkvotienter vh. differenskvotienter. Problemet med differentilkvotienter er, t de er defineret som en grænseværdi f en differenskvotient, hvor både tæller og nævner går mod. De er derfor ret følsomme overfor upræcisheder, idet deres værdi er forholdet mellem hstigheden, hvormed tæller og nævner går mod nul. Alterntivt til differenskvotienterne kn differentilkvotienten pproksimeres ved t pproksimere den pågældende funktion f med et polynomium p n vh. metoderne fr sidste lektion og bruge følgende: f (x) p n(x). Hvis n = og under ntgelsen x 1 x = x x 1 = h giver dette: f 1 h ( f + 4f 1 f ), f 1 1 h ( f + f ) f 1 h (f 4f 1 + f ) hvor f i = f (x i ) og f i = f(x i ). Med flere målepunkter stiger grden f polynomiet, og eksempelvis fås f = 1 1h (f 8f 1 + 8f f 4 ), igen under ntgelsen x i = h, f i = f(x i ) og f i = f (x i ).

Matematisk modellering og numeriske metoder. Lektion 17

Matematisk modellering og numeriske metoder. Lektion 17 Matematisk modellering og numeriske metoder Lektion 1 Morten Grud Rasmussen. december 16 1 Numerisk integration og differentiation 1.1 Simpsons regel Antag, at vi har en funktion f på intervallet I = [a,

Læs mere

MM501 forelæsningsslides

MM501 forelæsningsslides MM501 forelæsningsslides uge 39, 009 Produceret f Hns J. Munkholm 1 Linerisering s. 66-67 Lineriseringen f f omkring x =, er den lineære funktion, der hr tngenten som grf. Klder mn den L er forskriften

Læs mere

MM501 forelæsningsslides

MM501 forelæsningsslides MM501 forelæsningsslides uge 38, 010 Produceret f Hns J. Munkholm berbejdet f Jessic Crter 1 l Hopitls regler Afsnit 4.3 l Hopitls regel I omhndler beregning f grænseværdier f formen lim x f(x) g(x), hvor

Læs mere

Pointen med Integration

Pointen med Integration Pointen med Integrtion Frnk Vill 3. oktober 2012 2008-2012. IT Teching Tools. ISBN-13: 978-87-92775-00-9. Dette dokument må kun nvendes til undervisning i klsser som bonnerer på MtBog.dk. Se yderligere

Læs mere

Pointen med Integration

Pointen med Integration Pointen med Integrtion Frnk Nsser 20. pril 2011 c 2008-2011. Dette dokument må kun nvendes til undervisning i klsser som bonnerer på MtBog.dk. Se yderligere betingelser for brug her. Bemærk: Dette er en

Læs mere

Analysens Fundamentalsætning

Analysens Fundamentalsætning Anlysens Fundmentlsætning Frnk Nsser 11. juli 2011 2008-2011. Dette dokument må kun nvendes til undervisning i klsser som bonnerer på MtBog.dk. Se yderligere betingelser for brug her. Indhold 1 Introduktion

Læs mere

ANALYSE 1, 2014, Uge 3

ANALYSE 1, 2014, Uge 3 ANALYSE 1, 2014, Uge 3 Forelæsninger Tirsdg. Vi generliserer tlrækker til funktionsrækker ved t udskifte tllene med funktioner (TL Afsnit 12.5). Det svrer til forrige uges skridt fr tlfølger til funktionsfølger.

Læs mere

Institut for Matematik, DTU: Gymnasieopgave. Integrationsprincippet og Keplers tønderegel

Institut for Matematik, DTU: Gymnasieopgave. Integrationsprincippet og Keplers tønderegel Integrtionsprincippet og Keplers tønderegel. side Institut for Mtemtik, DTU: Gymnsieopgve Integrtionsprincippet og Keplers tønderegel Littertur: H. Elrønd Jensen, Mtemtisk nlyse, Institut for Mtemtik,

Læs mere

ANALYSE 1, 2015, Uge 2

ANALYSE 1, 2015, Uge 2 ANALYSE 1, 2015, Uge 2 Forelæsninger Denne uges tem er uendelige rækker. Tirsdg: Tlrækker. En uendelig tlrække består ligesom en uendelig tlfølge f uendelig mnge tl. Forskellen mellem de to begreber består

Læs mere

(a k cos kx + b k sin kx) k=1. cos θk = sin θ 1 ak. , b k. k=1

(a k cos kx + b k sin kx) k=1. cos θk = sin θ 1 ak. , b k. k=1 SEKTION 7 FOURIERANALYSE 7 Fouriernlyse Periodiske funktioner er vigtige i mnge smmenhænge, både videnskbeligt og teknisk Vi vil normlisere, så ntger, t perioden er π Disse funktioner er bedst nlyseret

Læs mere

MM501 forelæsningsslides

MM501 forelæsningsslides MM50 forelæsningsslides uge 39, 200 Produceret f Hns J. Munkholm berbejdet f Jessic Crter Integrtion ved substitution Afsnit5.6 Ubestemte integrler s. 37-39 Reglen om differentition f en smmenst funktion

Læs mere

Integration ved substitution og delvis (partiel) integration

Integration ved substitution og delvis (partiel) integration DEN TEKNISK-NATURVIDENSKABELIGE BASISUDDANNELSE MATEMATIK INTEGRATION EFTERÅRET Integrtion ved sustitution og delvis (prtiel) integrtion Differentil- og integrlregningens hovedsætning lyder: Hvis ƒ er

Læs mere

Projekt 7.8 To ligninger med to ubekendte

Projekt 7.8 To ligninger med to ubekendte Projekt 78 To ligninger med to uekendte Den opgve t skulle løse to ligninger med to uekendte er vi stødt på i en række speciltilfælde under ehndlingen f vækstmodellerne: Funktionstype Ligningssystem Lineær

Læs mere

Projekt 5.7 Hovedsætninger om differentiable funktioner et opgaveforløb

Projekt 5.7 Hovedsætninger om differentiable funktioner et opgaveforløb Hvd er mtemtik?, e-og Projekter: Kpitel 5 Projekt 57 Hovedsætninger om differentile funktioner Projekt 57 Hovedsætninger om differentile funktioner et opgveforlø Projektet er en udvidelse f fsnittet i

Læs mere

Lektion 7s Funktioner - supplerende eksempler

Lektion 7s Funktioner - supplerende eksempler Lektion 7s Funktioner - supplerende eksempler Oversigt over forskellige tper f funktioner Omvendt proportionlitet og hperler.grdsfunktioner og prler Eksponentilfunktioner Potensfunktioner Lektion 7s Side

Læs mere

ANALYSE 1, 2013, Uge 2

ANALYSE 1, 2013, Uge 2 ANALYSE 1, 2013, Uge 2 Forelæsninger Denne uges tem er uendelige rækker. Tirsdg: Tlrækker. En uendelig tlrække består ligesom en uendelig tlfølge f uendelig mnge tl. Forskellen mellem de to begreber består

Læs mere

Spil- og beslutningsteori

Spil- og beslutningsteori Spil- og eslutningsteori Peter Hrremoës Niels Brock 26. novemer 2 Beslutningsteori De økonomiske optimeringssitutioner, vi hr set på hidtil, hr været helt deterministiske. Det vil sige t vores gevinst

Læs mere

Matematisk modellering og numeriske metoder. Lektion 12

Matematisk modellering og numeriske metoder. Lektion 12 Mtemtisk modellering numeriske metoder Lektion 12 Morten Grud Rsmussen 21. oktober, 213 1 Prtielle differentilligninger 1.1 Løsning f vrmeligningen vh. Fourierrækker [Bens sektion 12.6 på side 558] Vi

Læs mere

Noget om Riemann integralet. Noter til Matematik 2

Noget om Riemann integralet. Noter til Matematik 2 Noget om Riemnn integrlet. Noter til Mtemtik 2 Arne Jensen Afdeling for Mtemtik og Dtlogi Institut for Elektroniske Systemer Alborg Universitetscenter Fredrik Bjers Vej 7 9220 Alborg Ø 4. pril 1991 Revideret

Læs mere

gudmandsen.net y = b x a Illustration 1: potensfunktioner i 5 forskellige grupper

gudmandsen.net y = b x a Illustration 1: potensfunktioner i 5 forskellige grupper gudmndsen.net Dette dokument er publiceret på http://www.gudmndsen.net/res/mt_vejl/. Ophvsret: Indholdet stilles til rådighed under Open Content License[http://opencontent.org/openpub/]. Kopiering, distribution

Læs mere

Eksamen Analyse 1, Juni 2015, Besvarelse 1. Opgave 1. ( ln x) q x p dx =

Eksamen Analyse 1, Juni 2015, Besvarelse 1. Opgave 1. ( ln x) q x p dx = Eksmen Anlyse, Juni 25, Besvrelse Ld p >, q, og r. Opgve () Vis t integrlet ( ln x)r x p dx konvergerer. [Vink: Smmenlign med x s for pssende vlgt s.] ( ln x)q x p dx. [Vink: Anvend (b) Bevis formlen (

Læs mere

Integralregning. 2. del. 2006 Karsten Juul

Integralregning. 2. del. 2006 Karsten Juul Integrlregning del ( ( 6 Krsten Juul Indhold 6 Uestemt integrl8 6 Sætning om eksistens stmunktioner 8 6 Oplæg til "regneregler or integrl"8 6 Regneregler or uestemt integrl 9 68 Foreredelse til "integrtion

Læs mere

( ) Projekt 7.17 Simpsons formel A A A. Hvad er matematik? 3 ISBN

( ) Projekt 7.17 Simpsons formel A A A. Hvad er matematik? 3 ISBN Projekt 7.7 Simpsons formel Simpson vr søn f en selvlært væver, og skulle egentlig selv hve været en væver, men en solformørkelse vkte hns interesse for mtemtik og nturvidensk og mod lle odds lykkedes

Læs mere

MATEMATISK FORMELSAMLING

MATEMATISK FORMELSAMLING MATEMATISK FORMELSAMLING GUX Grønlnd Mtemtisk formelsmling til B-niveu, GUX Grønlnd Deprtementet for uddnnelse 05 Redktion: Rsmus Andersen, Jens Thostrup MtemtiskformelsmlingtilB-niveu GUX Grønlnd FORORD

Læs mere

Matematikkens mysterier - på et højt niveau. 3. Differentialligninger

Matematikkens mysterier - på et højt niveau. 3. Differentialligninger Mtemtikkens msterier - på et højt niveu f Kenneth Hnsen 3. Differentilligninger N N N 3 A A k k Indholdsfortegnelse 3. Introduktion 3. Dnmiske sstemer 3 3.3 Seprtion f de vrible 8 3.4 Vækstmodeller 8 3.5

Læs mere

... ... ... ... ... ... ... b > 0 og x > 0, vil vi kalde en potensfunktion. 492 10. Potensfunktioner

... ... ... ... ... ... ... b > 0 og x > 0, vil vi kalde en potensfunktion. 492 10. Potensfunktioner POTENSFUNKTIONER 0 49 0. Potensfunktioner POTENSFUNKTIONER DEFINITION En funktion med forskriften f( )= b hvor b > 0 og > 0 vil vi klde en potensfunktion. I MAT C kpitel så vi t hvis skl være et vilkårligt

Læs mere

Potens- sammenhænge. inkl. proportionale og omvendt proportionale variable. 2010 Karsten Juul

Potens- sammenhænge. inkl. proportionale og omvendt proportionale variable. 2010 Karsten Juul Potens- smmenhænge inkl. proportionle og omvendt proportionle vrible 010 Krsten Juul Dette hæfte er en fortsættelse f hæftet "Eksponentielle smmenhænge, udgve ". Indhold 1. Hvd er en potenssmmenhæng?...1.

Læs mere

Integrationsteknikker

Integrationsteknikker Integrtionsteknikker Frnk Vill. jnur 14 Dette dokument er en del f MtBog.dk 8-1. IT Teching Tools. ISBN-13: 978-87-9775--9. Se yderligere betingelser for brug her. Indhold 1 Introduktion 1 Numerisk integrtion.1

Læs mere

Potens regression med TI-Nspire

Potens regression med TI-Nspire Potensvækst og modellering - Mt-B/A 2.b 2007-08 Potens regression med TI-Nspire Vi tger her udgngspunkt i et eksempel med tovværk, hvor mn får oplyst en tbel over smmenhængen mellem dimeteren (xdt) i millimeter

Læs mere

Om Riemann-integralet. Noter til Matematik 1

Om Riemann-integralet. Noter til Matematik 1 Om Riemnn-integrlet. Noter til Mtemtik 1 Jon Johnsen Institut for Mtemtiske Fg, Alborg Universitet Fredrik Bjers Vej 7G, 9220 Ålborg Ø 3. december 2001 1 Indledning Integrlregning går tilbge til Newtons

Læs mere

1 1 t 10 1. ( ) x 2 4. + k ================= sin( x) + 4 og har graf gennem (0,2), dvs F(0) = 2. + 4x + k

1 1 t 10 1. ( ) x 2 4. + k ================= sin( x) + 4 og har graf gennem (0,2), dvs F(0) = 2. + 4x + k 0x-MA (0.0.08) _ opg (3:07) Integrtion ved substitution ( x + 7) 9 t x + 7 > t 9 t 0 + k 0 0 ( x + 7)0 + k b) x x + 4 t x + 4 > 3 x t t t x 3 t x x + k 3 t t + k ( ) x 4 3 x + 4 + + k c) cos( x)

Læs mere

TAL OG REGNEREGLER. Vi ser nu på opbygningen af et legeme og noterer os samtidig, at de reelle tal velkendte regneoperationer + og er et legeme.

TAL OG REGNEREGLER. Vi ser nu på opbygningen af et legeme og noterer os samtidig, at de reelle tal velkendte regneoperationer + og er et legeme. TAL OG REGNEREGLER Inden for lgeren hr mn indført egreet legeme. Et legeme er en slgs konstruktion, hvor mn fstsætter to regneregler og nogle sætninger (ksiomer), der gælder for disse. Pointen med en sådn

Læs mere

Differentialregning. integralregning

Differentialregning. integralregning Differentilregning og integrlregning Ib Micelsen Ikst 013 Indoldsfortegnelse Tegneøvelser...3 Introduktion... Definition f differentilkvotient og tngent...6 Tngentældninger...7 Den fledte funktion...7

Læs mere

Bogstavregning. for gymnasiet og hf Karsten Juul. a a

Bogstavregning. for gymnasiet og hf Karsten Juul. a a Bogstvregning for gymnsiet og hf 010 Krsten Juul Til eleven Brug lynt og viskelæder når du skriver og tegner i hæftet, så du får et hæfte der er egenet til jævnligt t slå op i under dit videre rejde med

Læs mere

k(k 1)(k 2)... (k n + 1) = = 12 2 = 6

k(k 1)(k 2)... (k n + 1) = = 12 2 = 6 Oversigt [S] 8.7, 8.8, 8.9 Nøgleord og begreber Binomilformlen Binomilkoefficienter Binomilrækken Tylor polynomier Vurdering f Tylor s restled Eksponentilrækken konvereger mod eksponentilfunktionen Clculus

Læs mere

UGESEDDEL 52. . Dette gøres nedenfor: > a LC

UGESEDDEL 52. . Dette gøres nedenfor: > a LC UGESEDDE 52 Opgve 1 Denne opgve er et mtemtisk eksempel på Ricrdo s én-fktor model, der præsenteres i Krugmn & Obstfeld kpitel 2 side 12-19. Denne model beskriver hndel som et udslg f komprtive fordele

Læs mere

Differential-kvotient. Produkt og marked - differential og integralregning. Regneregler. Stamfunktion. Lad f være en funktion - f.eks. f (x) = 2x 2.

Differential-kvotient. Produkt og marked - differential og integralregning. Regneregler. Stamfunktion. Lad f være en funktion - f.eks. f (x) = 2x 2. Differentil-kvotient Ld f være en funktion - f.eks. f (x) = 2x 2. Produkt og mrked - differentil og integrlregning Rsmus Wgepetersen Institut for Mtemtiske Fg Alborg Universitet Februry 14, 2014 Differentilkvotienten

Læs mere

INFINITESIMALREGNING del 2 Stamfunktioner og differentialkvotienter Regneregler Optimering Taylorrækker

INFINITESIMALREGNING del 2 Stamfunktioner og differentialkvotienter Regneregler Optimering Taylorrækker INFINITESIMALREGNING del Stmfunktioner og differentilkvotienter Regneregler Optimering Tylorrækker -klsserne Gmmel Hellerup Gymnsium Indholdsfortegnelse STAMFUNKTIONER... 3 REGNEREGLER... 9 AFLEDEDE FUNKTIONER...

Læs mere

Regneregler for brøker og potenser

Regneregler for brøker og potenser Regneregler for røker og potenser Roert Josen 4. ugust 009 Indhold Brøker. Eksempler......................................... Potenser 7. Eksempler......................................... 8 I de to fsnit

Læs mere

Simple udtryk og ligninger

Simple udtryk og ligninger Simple udtryk og ligninger for gymnsiet og hf 0 Krsten Juul Indhold Rækkefølge f + og... Smle led f smme type... Gnge ind i prentes. del... Rækkefølge f og smt f + og... Gnge ind i prentes. del... Hæve

Læs mere

Du kan efter ønske opfatte integralet som et Riemann-integral eller et Lebesgue-integral (idet de to er identiske på C([a, b], C) jf. Theorem 11.8.

Du kan efter ønske opfatte integralet som et Riemann-integral eller et Lebesgue-integral (idet de to er identiske på C([a, b], C) jf. Theorem 11.8. Anlyse Øvelser Rsmus Sylvester Bryder. og 5. oktober 3 Supplerende opgve Ld C([, b], C) betegne rummet f lle kontinuerte funktioner f : [, b] C, hvor < b, og definér et indre produkt på C([, b], C) ved

Læs mere

Integralregning. Version juni Mike Vandal Auerbach

Integralregning. Version juni Mike Vandal Auerbach Integrlregning Version.0 27. juni 209 y f x Mike Vndl Auerch www.mthemticus.dk Integrlregning Version.0, 209 Disse noter er skrevet til mtemtikundervisningen på stx A- og B-niveu efter gymnsiereformen

Læs mere

Arctan x = x x3 3 + x5 (En syvende berømt række er binomialrækken, [S] 8.8.) Eksempel

Arctan x = x x3 3 + x5 (En syvende berømt række er binomialrækken, [S] 8.8.) Eksempel Oversigt [S] 8.5, 8.6, 8.7, 8.0 Nøgleord og begreber Seks berømte potensrækker Potensrække Konvergensrdius Differentition og integrtion f potensrækker Tylor og McLurin rækker August 00, opgve 4 Den geometriske

Læs mere

Michel Mandix (2017) Derfor er der behov for en række værktøjer, som kan bruges også til de vilkårlige trekanter. a b c A B C

Michel Mandix (2017) Derfor er der behov for en række værktøjer, som kan bruges også til de vilkårlige trekanter. a b c A B C Mihel Mndix (07) Sinusreltionen Nott Side f 9 Sinusreltionen Indtil videre, er der kun eskrevet, hvordn mn eregner på retvinklede treknter. Men desværre er det lngtfr lle treknter, som er retvinklede.

Læs mere

ØVEHÆFTE FOR MATEMATIK C POTENS-SAMMENHÆNG

ØVEHÆFTE FOR MATEMATIK C POTENS-SAMMENHÆNG ØVEHÆFTE FOR MATEMATIK C POTENS-SAMMENHÆNG INDHOLDSFORTEGNELSE 1 Formelsmling... side 2 Uddbning f visse formler... side 3 2 Grundlæggende færdigheder... side 5 2 Finde konstnterne og b i en formel...

Læs mere

INTEGRALREGNING. Opgaver til noterne kan findes her. PDF. Facit til opgaverne kan hentes her. PDF. Version: 5.0

INTEGRALREGNING. Opgaver til noterne kan findes her. PDF. Facit til opgaverne kan hentes her. PDF. Version: 5.0 INTEGRALREGNING Version: 5.0 Noterne gennemgår egreerne: integrl og stmfunktion, og nskuer dette som et redsk til estemmelse f l.. reler under funktioner. Opgver til noterne kn findes her. PDF Fcit til

Læs mere

2 Erik Vestergaard

2 Erik Vestergaard Erik Vestergrd www.mtemtikfysik.dk Erik Vestergrd www.mtemtikfysik.dk 3 Definition 1 En funktion på formen f ( x) = b x, x R +, hvor b R + og R er konstnter, kldes for en potensudvikling eller en potensiel

Læs mere

TAL OG BOGSTAVREGNING

TAL OG BOGSTAVREGNING TAL OG BOGSTAVREGNING De elementære regnerter I mtemtik kn vi regne med tl, men vi kn også regne med bogstver, som gør det hele en smugle mere bstrkt. Først skl vi se lidt på de fire elementære regnerter,

Læs mere

Eksponentielle Sammenhænge

Eksponentielle Sammenhænge Kort om Eksponentielle Smmenhænge 011 Krsten Juul Dette hæfte indeholder pensum i eksponentielle smmenhænge for gymnsiet og hf. Indhold 1. Procenter på en ny måde... 1. Hvd er en eksponentiel smmenhæng?....

Læs mere

Lektion 6 Bogstavregning

Lektion 6 Bogstavregning Lektion Bogstvregning Formler... Reduktion... Ligninger... Lektion Side 1 Formler En formel er en slgs regne-opskrift, hvor mn med bogstver viser, hvorledes noget skl regnes ud. F.eks. formler til beregning

Læs mere

FUNKTIONER del 2 Eksponentielle udviklinger Trigonometriske funktioner Potensfunktioner Polynomier Modeller Regression

FUNKTIONER del 2 Eksponentielle udviklinger Trigonometriske funktioner Potensfunktioner Polynomier Modeller Regression FUNKTIONER del Eksponentielle udviklinger Trigonometriske funktioner Potensfunktioner Polynomier Modeller Regression -klsserne Gmmel Hellerup Gymnsium Indhold EKSPONENTIELLE UDVIKLINGER... 3 Forskrift

Læs mere

Projekt 8.4 Logaritmefunktionerne

Projekt 8.4 Logaritmefunktionerne Hvd er mtemtik? Projekter: Kpitel 8. Projekt 8.4 Logritmefunktionerne Projekt 8.4 Logritmefunktionerne Indhold. log( ) og 0 som omvendte funktioner... 2 2. Den nturlige logritmefunktion, ln( ) og den nturlige

Læs mere

Grundlæggende funktioner

Grundlæggende funktioner Grundlæggende funktioner for A-niveu i st Udgve 5 018 Krsten Juul Grundlæggende funktioner for A-niveu i st Procent 1. Procenter på en ny måde... 1. Vækstrte... 3. Gennemsnitlig procent... Lineær vækst

Læs mere

3. Vilkårlige trekanter

3. Vilkårlige trekanter 3. Vilkårlige treknter 3. Vilkårlige treknter I dette fsnit vil vi beskæftige os med treknter, der ikke nødvendigvis er retvinklede. De formler, der er omtlt i fsnittet om retvinklede treknter, kn ikke

Læs mere

Diverse. Ib Michelsen

Diverse. Ib Michelsen Diverse Ib Michelsen Ikst 2008 Forsidebilledet http://www.smtid.dk/visen/billede.php?billedenr69 Version: 0.02 (2-1-2009) Diverse (Denne side er A-2 f 32 sider) Indholdsfortegnelse Regning med procent

Læs mere

Mere end blot lektiehjælp. Få topkarakter i din SRP. 12: Hovedafsnittene i din SRP (Redegørelse, analyse, diskussion)

Mere end blot lektiehjælp. Få topkarakter i din SRP. 12: Hovedafsnittene i din SRP (Redegørelse, analyse, diskussion) Mere end lot lektiehjælp Få topkrkter i din SRP 12: Hovedfsnittene i din SRP (Redegørelse, nlyse, diskussion) Hjælp til SRP-opgven Sidste år hjlp vi 3.600 gymnsieelever med en edre krkter i deres SRP-opgve.

Læs mere

Matematikprojekt. Integralregning. Lavet af Arendse Morsing Gunilla Olesen Julie Slavensky Michael Hansen. 15 Oktober 2010

Matematikprojekt. Integralregning. Lavet af Arendse Morsing Gunilla Olesen Julie Slavensky Michael Hansen. 15 Oktober 2010 Mtemtikprojekt om Integrlregning Lvet f Arendse Morsing Gunill Olesen Julie Slvensky Michel Hnsen 15 Oktober 21 Indhold I Del 1................................ 3 I Generelt om stmfunktioner og integrler........

Læs mere

Lektion 6 Bogstavregning

Lektion 6 Bogstavregning Mtemtik på Åbent VUC Lektion 6 Bogstvregning Formler... Udtryk... Ligninger... Ligninger som løsningsmetode i regneopgver... Simultion... Opsmlingsopgver... Lvet f Niels Jørgen Andresen, VUC Århus. Redigeret

Læs mere

Integralregning. Erik Vestergaard

Integralregning. Erik Vestergaard Integrlregning Erik Vestergrd Erik Vestergrd www.mtemtikfysik.dk Erik Vestergrd, Hderslev 4 Erik Vestergrd www.mtemtikfysik.dk Indholdsfortegnelse Indholdsfortegnelse. Indledning 4. Stmfunktioner 4. Smmenhængen

Læs mere

Matematikkens sprog INTRO

Matematikkens sprog INTRO Mtemtikkens sprog Mtemtik hr sit eget sprog, der består f tl og symboler fx regnetegn, brøkstreger bogstver og prenteser På mnge måder er det ret prktisk - det giver fx korte måder t skrive formler på.

Læs mere

Mat1GB Minilex. Henrik Dahl, Hold 8. 29. maj 2003. 1 Definitioner 2

Mat1GB Minilex. Henrik Dahl, Hold 8. 29. maj 2003. 1 Definitioner 2 Mt1GB Minilex Henrik Dhl, Hold 8 29. mj 2003 Indhold 1 Definitioner 2 2 Sætninger m.v. 18 2.1 Begrænsethed, åben/lukket..................... 18 2.2 Differentition............................ 18 2.3 Differentilligninger.........................

Læs mere

Michel Mandix (2010) INDHOLDSFORTEGNELSE:... 2 EN TREKANTS VINKELSUM... 3 PYTHAGORAS LÆRESÆTNING... 4 SINUSRELATIONERNE... 4 COSINUSRELATIONERNE...

Michel Mandix (2010) INDHOLDSFORTEGNELSE:... 2 EN TREKANTS VINKELSUM... 3 PYTHAGORAS LÆRESÆTNING... 4 SINUSRELATIONERNE... 4 COSINUSRELATIONERNE... MATEMATIK NOTAT MATEMATISKE EVISER AF: CAND. POLYT. MICHEL MANDIX SIDSTE REVISION: FERUAR 04 Michel Mndi (00) Side f 35 Indholdsfortegnelse: INDHOLDSFORTEGNELSE:... EN TREKANTS VINKELSUM... 3 PYTHAGORAS

Læs mere

Formelsamling Mat. C & B

Formelsamling Mat. C & B Formelsmling Mt. C & B Indhold BRØER... PARENTESER...3 PROCENT...4 RENTE...5 INDES...6 GEOMETRI... Arel f treknt... Vinkelsum i en treknt... Ens- vinklede treknter... Vilkårlig treknt... Ret- vinklet treknt...8

Læs mere

Matematisk modellering og numeriske metoder. Lektion 16

Matematisk modellering og numeriske metoder. Lektion 16 Matematisk modellering og numeriske metoder Lektion 16 Morten Grud Rasmussen 6. november, 2013 1 Interpolation [Bogens afsnit 19.3 side 805] 1.1 Interpolationspolynomier Enhver kontinuert funktion f på

Læs mere

Erik Vestergaard www.matematikfysik.dk. Erik Vestergaard, 2009.

Erik Vestergaard www.matematikfysik.dk. Erik Vestergaard, 2009. Erik Vestergrd www.mtemtikfysik.dk Erik Vestergrd, 009. Billeder: Forside: Collge f billeder: istock.com/titoslck istock.com/yuri Desuden egne fotos og illustrtioner Erik Vestergrd www.mtemtikfysik.dk

Læs mere

Trigonometri. Trigonometri. Sinus og cosinus... 2 Tangens... 6 Opgaver... 9. Side 1

Trigonometri. Trigonometri. Sinus og cosinus... 2 Tangens... 6 Opgaver... 9. Side 1 Trigonometri Sinus og osinus... 2 Tngens... 6 Opgver... 9 Side Sinus og osinus Til lle vinkler hører der to tl, som kldes osinus og sinus. Mn finder sinus og osinus til en vinkel ved t tegne vinklen midt

Læs mere

Kap. 3: Logaritme-, eksponential- og potensfunktioner. Differential- og integralregning.

Kap. 3: Logaritme-, eksponential- og potensfunktioner. Differential- og integralregning. - 94 - Kp. 3: Logritme-, eksponentil- og potensfunktioner. Differentil- og integrlregning. 3.. Differentition f logritmefunktioner. Sætning 3... ) Enhver logritmefunktion er differentibel ) Den nturlige

Læs mere

Regneregler. 1. Simple regler for regning med tal.

Regneregler. 1. Simple regler for regning med tal. Regneregler. Simple regler for regning med tl. Vi rejder l.. med følgende fire regningsrter: plus (), minus ( ), gnge () og dividere (: eller røkstreg, se senere), eller med fremmedord : ddition, sutrktion,

Læs mere

Matematik - introduktion. Martin Lauesen February 23, 2011

Matematik - introduktion. Martin Lauesen February 23, 2011 Mtemtik - introduktion Mrtin Luesen Februry 23, 2011 1 Contents 1 Aritmetik og elementær lgebr 3 1.1 Symboler............................... 3 1.1.1 ligheder............................ 4 1.1.2 uligheder...........................

Læs mere

Om Dido var kyndig i matematik er nok tvivlsomt, men hun havde i hvert fald en veludviklet logisk sans, som vi skal se.

Om Dido var kyndig i matematik er nok tvivlsomt, men hun havde i hvert fald en veludviklet logisk sans, som vi skal se. Forord. Det isoperimetriske problem går i l sin enkelhed ud på t finde den lukkede kurve i plnen, blndt en mængde f kurver lle med smme omkreds, som fgrænser det størst mulige rel. Løsningen til det isoperimetriske

Læs mere

- 81 - , x I. kmx. Sætningen bevises ikke her. Interesserede læsere henvises til bogen: Differentialligninger og matematiske

- 81 - , x I. kmx. Sætningen bevises ikke her. Interesserede læsere henvises til bogen: Differentialligninger og matematiske - 8 - Appendi : Logistisk vækst og integrlregning. I forbindelse med eksponentielle vækstfunktioner er der tle om en vækstform, hvor funktionens væksthstighed er proportionl med den ktuelle funktionsværdi,

Læs mere

Matematik. Kompendium i faget. Tømrerafdelingen. 1. Hovedforløb. a 2 = b 2 + c 2 2 b c cos A. cos A = b 2 + c 2 - a 2 2 b c

Matematik. Kompendium i faget. Tømrerafdelingen. 1. Hovedforløb. a 2 = b 2 + c 2 2 b c cos A. cos A = b 2 + c 2 - a 2 2 b c Kompendium i fget Mtemtik Tømrerfdelingen 1. Hovedforlø. Trigonometri nvendes til eregning f snd længde og snd vinkel i profiler. Sinus Cosinus Tngens 2 2 + 2 2 os A os A 2 + 2-2 2 Svendorg Erhvervsskole

Læs mere

Planintegralet. Preben Alsholm 5. maj 2008. 1.1 Integralet af en funktion af én variabel. 1, x i ] et tal t i. Summen. n f (t i ) (x i x i 1 ) R =

Planintegralet. Preben Alsholm 5. maj 2008. 1.1 Integralet af en funktion af én variabel. 1, x i ] et tal t i. Summen. n f (t i ) (x i x i 1 ) R = Plnintegrlet Preben Alsholm 5. mj 8 Plnintegrlet. Integrlet f en funktion f én vribel et bestemte integrl efinition Ld f være en funktion defineret på intervllet [ b]. Ld = x x... x n = b være en inddeling

Læs mere

Stamfunktion & integral

Stamfunktion & integral PeterSørensen.dk Stmfunktion & integrl Indhold Stmfunktion... Integrl (Uestemt integrl)... 2 Det estemte integrl... 2 Arel og integrl... Regneregler for estemte integrler... Integrler / stmfunktioner kn

Læs mere

Det dobbelttydige trekantstilfælde

Det dobbelttydige trekantstilfælde Det dobbelttydige trekntstilfælde Heine Strømdhl, Københvns Kommunes Ungdomsskoler Formålet med denne rtikel er t formulere en meget simpel grfisk løsningsmetode til det dobbelttydige trekntstilfælde med

Læs mere

Elementær Matematik. Vektorer i planen

Elementær Matematik. Vektorer i planen Elementær Mtemtik Vektorer i plnen Køge Gymnsium 0 Ole Witt-Hnsen Indhold. Prllelforskydninger i plnen. Vektorer.... Sum og differens f to vektorer... 3. Multipliktion f vektor med et tl...3 4. Opløsning

Læs mere

Elementær Matematik. Analytisk geometri

Elementær Matematik. Analytisk geometri Elementær Mtemtik Anltisk geometri Ole Witt-Hnsen 0 Indhold. koordintsstemet.... Afstndsformlen.... Liniens ligning...4 4. Ortogonle linier...7 5. Liniers skæring. To ligninger med to uekendte....7 6.

Læs mere

GrundlÄggende funktioner

GrundlÄggende funktioner GrundlÄggende funktioner for B-niveu i hf Udgve 014 Krsten Juul GrundlÄggende funktioner for B-niveu i hf Procent 1. Procenter på en ny måde... 1. VÄkstrte.... Gennemsnitlig procent... LineÄr väkst 4.

Læs mere

Lektion 5 Det bestemte integral

Lektion 5 Det bestemte integral f(x) dx = F (b) F () Lektion 5 Det bestemte integrl Definition Integrlregningens Middelværdisætning Integrl- og Differentilregningens Hovedsætning Bereging f bestemte integrler Regneregler Arel mellem

Læs mere

MATEMATIK-KOMPENDIUM TIL KOMMENDE ELEVER PÅ DE GYMNASIALE UNGDOMSUDDANNELSER I SILKEBORG (HF, HHX, HTX & STX)

MATEMATIK-KOMPENDIUM TIL KOMMENDE ELEVER PÅ DE GYMNASIALE UNGDOMSUDDANNELSER I SILKEBORG (HF, HHX, HTX & STX) Silkeorg -0- MATEMATIK-KOMPENDIUM TIL KOMMENDE ELEVER PÅ DE GYMNASIALE UNGDOMSUDDANNELSER I SILKEBORG (HF, HHX, HTX & STX) FACITLISTE Udrejdet f mtemtiklærere fr HF, HHX, HTX & STX. PS: Hvis du opdger

Læs mere

9 Geodætiske kurver og Gauss-krumning

9 Geodætiske kurver og Gauss-krumning 9 Geodætiske kurver og Guss-krumning 9. Geodætiske kurver En ret linie i plnen fr punktet p til punktet q hr den egenskb t enhver nden kurve fr p til q hr kurvelængde som er mindst p q. Et stykke f en

Læs mere

ALGEBRA. symbolbehandling). Der arbejdes med hjælpemiddelkompetencen,

ALGEBRA. symbolbehandling). Der arbejdes med hjælpemiddelkompetencen, INTRO Alger er lngt mere end ogstvregning. Alger kn være t omskrive ogstvtrk, men lger er f også t generlisere mønstre og smmenhænge, t eskrive smmenhænge mellem tlstørrelse f i forindelse med funktioner

Læs mere

Kort om Potenssammenhænge

Kort om Potenssammenhænge Øvelser til hæftet Kort om Potenssmmenhænge 2011 Krsten Juul Dette hæfte indeholder bl.. mnge småspørgsmål der gør det nemmere for elever t rbejde effektivt på t få kendskb til emnet. Indhold 1. Ligning

Læs mere

hvor A er de ydre kræfters arbejde på systemet og Q er varmen tilført fra omgivelserne til systemet.

hvor A er de ydre kræfters arbejde på systemet og Q er varmen tilført fra omgivelserne til systemet. !#" $ "&% (')"&*,+.-&/102%435"&6,+879$ *1')*&: or et system, hvor kun den termiske energi ændres, vil tilvæksten E term i den termiske energi være: E term A + Q hvor A er de ydre kræfters rbejde på systemet

Læs mere

For så kan de to additionsformler samles i én formel, der kan ses som et specialtilfælde af den komplekse eksponentialfunktions funktionalligning,

For så kan de to additionsformler samles i én formel, der kan ses som et specialtilfælde af den komplekse eksponentialfunktions funktionalligning, 15.1. Komplekse integrler 293 læse, og hvordn gør mn det i prksis? Men den virkelige motivtion bg begrebet bliver udst til fsnit 18.5, hvor vi viser t foldning f sndsynlighedsmål lder sig udtrykke meget

Læs mere

Fremkomsten af mængdelæren. Stig Andur Pedersen

Fremkomsten af mængdelæren. Stig Andur Pedersen Fremkomsten f mængdelæren Stig Andur Pedersen 1 Fourier række for f(x)=x x n 1 ( 1) 2 sin( nx) n n= 1 sin(2 x) sin(3 x) sin(4 x) = 2 sin( x) + + 2 3 4 De første 15 led er tget med på kurven. 2 Fourierrække

Læs mere

Matematik B-A. Trigonometri og Geometri. Niels Junge

Matematik B-A. Trigonometri og Geometri. Niels Junge Mtemtik B-A Trigonometri og Geometri Niels Junge Indholdsfortegnelse Indledning...3 Trigonometri...3 Sinusreltionen:...6 Cosinusreltionen...7 Dobbeltydighed...7 Smmendrg...8 Retvinklede treknter...8 Ikke

Læs mere

Elementær Matematik. Trigonometri

Elementær Matematik. Trigonometri Elementær Mtemtik Trigonometri Ole Witt-Hnsen 11 Indhold 1. Vinkler...1. Sinus, osinus og tngens...3.1 Overgngsformler...4 3. Den retvinklede treknt...6 4. Den lmindelige treknt. Sinus og osinus reltionerne...8

Læs mere

Eksamensopgave august 2009

Eksamensopgave august 2009 Ib Michelsen, Viborg C / Skive C Side 1 09-04-011 1 Eksmensopgve ugust 009 Opgve 1 3 4 5 6 7 8 9 10 11 1 13 14 15 16 17 18 19 0 1 Givet ovenstående ensvinklede treknter. D treknterne er ensvinklede, er

Læs mere

Trigonometri. teori mundtlig fremlæggelse C 2. C v. B v. A v

Trigonometri. teori mundtlig fremlæggelse C 2. C v. B v. A v Tigonometi teoi mundtlig femlæggelse 2 v v B v B Indhold 1. Sætning om ensvinklede teknte og målestoksfohold (uden bevis)... 2 2. Vinkelsummen i en teknt... 2 3. Pythgos sætning om ETVINKLEDE TEKNTE...

Læs mere

114 Matematiske Horisonter

114 Matematiske Horisonter 114 Mtemtiske Horisonter Mtemtik i medicinudvikling Af Ph.d-studerende Ann Helg Jónsdóttir, Ph.d-studerende Søren Klim, Ph.d-studerende Stig Mortensen og Professor Henrik Mdsen, DTU Informtik Hovedpinen

Læs mere

Kompendium. Matematik HF C niveau. Frederiksberg HF Kursus. Lars Bronée 2014

Kompendium. Matematik HF C niveau. Frederiksberg HF Kursus. Lars Bronée 2014 Kompendium Mtemtik HF C niveu π Frederiksberg HF Kursus Lrs Bronée 04 Mil: post@lrsbronee.dk Web: www.lrsbronee.dk Indholdsfortegnelse: Forord Det grundlæggende Ligningsløsning 8 Procentregning Rentesregning

Læs mere

Fælles for disse typer af funktioner er, at de som grundfunktion indeholder varianter af udtrykket x a.

Fælles for disse typer af funktioner er, at de som grundfunktion indeholder varianter af udtrykket x a. 5. FORSKRIFT FOR EN POTENSFUNKTION Vi hr i vores gennemgng f de forskellige funktionstper llerede være inde på udtrk, som indeholder forskellige potenser f I dette kpitel skl vi se på forskellige tper

Læs mere

Ny Sigma 9, s Andengradsfunktioner med regneforskrift af typen y = ax + bx + c, hvor a 0.

Ny Sigma 9, s Andengradsfunktioner med regneforskrift af typen y = ax + bx + c, hvor a 0. Ny Sigm 9, s 110 Andengrdsfunktioner med regneforskrift f typen y = x + x + c, hvor 0 Lineære funktioner (førstegrdsfunktioner) med regneforskrift f typen y = αx + β Grfen for funktioner f disse typer

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningseskrivelse Stmoplysninger til rug ved prøver til gymnsile uddnnelser Termin Juni 2016 Institution Uddnnelse Fg og niveu Lærere Hold Fvrskov Gymnsium Stx Mtemtik A Peter Lundøer (Lu) 3k Mtemtik

Læs mere

1 Plan og rumintegraler

1 Plan og rumintegraler 1 PLAN OG RUMINTEGRALER 1 1 Pln og rumintegrler Ligesom for funktioner f en vribel kn mn for kontinuerte funktioner f flere vrible definere deres integrle. Vi vil her kun beskæftige os med funktioner f

Læs mere

Tips. til træningsambassadørerne

Tips. til træningsambassadørerne Tips til træningsmbssdørerne NÅR I TRÆNER GENERELT 1. Brug et motiverende sprog også selvom du fktisk er lidt træt. Du kn for eksempel sige: Jeg er mx klr til træning hvd med dig? Er du frisk?! 2. Din

Læs mere

Formelsamling Matematik C Indhold

Formelsamling Matematik C Indhold Formelsmling Mtemtik C Indhold Eksempler på besvrelser, lin, eksp, pot, geo... Tl, regneopertioner og ligninger... 6 Ligninger... 7 Geometri... 0 Funktioner og modeller... 3 Lineær funktion... 3 Procentregning...

Læs mere

Elementær Matematik. Lineære funktioner og Andengradspolynomiet

Elementær Matematik. Lineære funktioner og Andengradspolynomiet Elementæ Mtemtik Lineæe funktione og Andengdspolynomiet Ole Witt-Hnsen Indhold. Den lineæe funktion.... Stykkevis lineæe funktione.... Andengdspolynomiet.... Pllelfoskydning f koodintsystemet.... Pllelfoskydning

Læs mere

KEGLESNIT OG BANEKURVER

KEGLESNIT OG BANEKURVER KEGLESNIT OG BANEKURVER x-klsserne Gmmel Hellerup Gymnsium INDHOLDSFORTEGNELSE INDHOLDSFORTEGNELSE... BEGREBET KEGLE... 3 KEGLESNIT... 5 Cirkel... 6 Ellipse... 8 Prbel... 15 Hyperbel... 19 Keglesnitsligninger

Læs mere