Archimedes Princip. Frank Nasser. 12. april 2011
|
|
|
- Vibeke Jensen
- 6 år siden
- Visninger:
Transkript
1 Archimedes Princip Frank Nasser 12. april 2011 c Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her. Bemærk: Dette er en arkiveret udgave af dokumentet som muligvis ikke er den nyeste tilgængelige.
2 Indhold 1 Introduktion 1 2 Archimedes princip 2 3 Bemærkninger 6
3 Resumé I dette dokument beviser vi Archimedes princip. Det foregår ved at bevise mange små hjælpesætninger ( lemmaer ) som til sidst bliver bygget sammen til et samlet bevis. 1 Introduktion Vi skal her bevise en fundamental egenskab ved de reelle tal, nemlig at ethvert interval på den reelle akse indeholder både rationelle og irrationelle tal, såfremt det overhovedet indeholder mere end et element. Umiddelbart er det svært at komme i tanker om gode eksempler på irrationelle tal. Vi kender 2, π og måske også e. Og af disse tre har vi faktisk kun bevist at 2 er irrationel 1. Sætningen her beviser at der er masser af irrationelle tal 2. Sjovt nok er det tilstrækkeligt for at vi kan gennemføre beviset at der findes et eneste irrationelt tal. Beviset er bygget sådan op at vi først beviser en række hjælpesætninger (såkaldte lemmaer), der hver især er meget logiske, og som tilsammen beviser selve hovedsætningen. Denne fremgangsmåde er meget almindelig i matematik. Eftersom sætningen handler om rationelle og irrationelle tal på den reelle akse, er det naturligvis en forudsætning at man minder sig selv om hvad rationelle tal er (nemlig brøker med hele tal i tæller og nævner) og hvad reelle tal er (nemlig en udvidelse af de rationelle tal, hvor man tillader kommatal med uendeligt mange, ikke periodiske cifre). Undervejs får vi desuden brug for sætningen om at kvadratroden af 2 er irrationel 3 (fordi vi jo skal bruge et irrationelt tal), og vi bruger også lidt basal terminologi om funktioner 4. 1 Du kan læse et meget avanceret bevis for at π er irrationelt her. 2 Faktisk er der i en vis forstand mange, mange flere end der er rationelle, men det kommer vi ikke ind på. I stedet kan du læse om mængders kardinaliteter her 3 Det kan du læse et bevis for her 4 Læs om funktioner her side 1
4 2 Archimedes princip Som nævnt i indledningen bygger vi beviset op lidt af gangen. Lemma 1 I de reelle tal findes der et element, x > 0, som opfylder at x 2 = 2. Bevis. Dette er faktisk den vanskeligste del af beviset fordi det i bund og grund afhænger af hvordan de reelle tal er konstrueret, og eftersom vores definition af de reelle tal (som kommatal med uendeligt mange cifre) ikke er særligt præcis, kan vi ikke bevise denne påstand. Hvis vi dog husker at de reelle tal er konstrueret med præcis det formål at enhver tænkelig længde af et linjestykke kan angives med et reelt tal, så er det en konsekvens af Pythagoras sætning at et sådant må x eksistere. Nemlig længden af hypotenusen i en retvinklet trekant, hvor begge kateder har længde 1. Lemma 2 Det reelle tal fra lemma 1 er irrationelt. Bevis. Dette er bevist i et tidligere dokument. Lemma 3 Det reelle tal fra lemma 1 er mindre end 2. side 2
5 Bevis. Betragt funktionen: f : { R R x x 2 Denne funktion er voksende på intervallet [0; [. Eftersom f(2) = 4, vil f(x) > 4 for alle x > 2. Specielt er f(x) 2 for alle x > 2. Derfor må det reelle tal fra lemma 1 være mindre end 2. Lemma 4 Hvis a og b er rationelle tal, så er a+b, a b og a b også rationelle tal. Hvis endvidere b 0, så er a også rationelt. b Bevis. Dette skyldes ganske enkelt definitionen af hvordan rationelle tal lægges sammen, trækkes fra hinanden og ganges og divideres med hinanden. Alle fire definitioner sikrer at resultatet giver et nyt rationelt tal. Lemma 5 Hvis man lægger et rationelt tal sammen med et irrationelt tal, så bliver det irrationelt. Bevis. Antag at a er et rationelt tal, og at b er et irrationelt tal. Hvis a+b skulle gå hen at være rationelt, så ville lemma 4 medføre at (a + b) a også var rationelt. Men (a + b) a er jo lig med b, som er irrationelt. Antagelsen om at a + b skulle være rationelt fører altså til modstrid, så derfor må a + b være irrationelt. side 3
6 Lemma 6 Hvis man ganger et irrationelt tal med et rationelt tal som ikke er nul, så bliver det irrationelt Bevis. Antag at a er et rationelt tal, som er forskelligt fra nul, og b er et irrationelt tal. Hvis a b skulle gå hen at være rationelt, så ville lemma 4 medføre at a b også var rationelt. Men a b er jo lig med b, som var antaget a a at være irrationelt, så antagelsen om at a b er rationelt fører til modstrid, derfor må den være irrationel. Lemma 7 Hvis L > 0 er et hvilket som helst reelt tal, så findes der både et rationelt tal og et irrationelt tal som er større end nul og mindre end L. Bevis. Ved at vælge n N stor nok (helt præcist skal man vælge n til at være større end 1 ), så kan man opnå at L 0 < 1 n < L Dermed har vi fundet et rationelt tal mellem 0 og L. Lad nu x betegne det irrationelle tal fra lemma 1. Fra lemma 6 ved vi at 1 x også er irrationelt (vi genbruger det samme n som vi 2n fandt ovenover). Fra lemma 3 får vi vurderingen: 1 2n x < 1 2n 2 = 1 n < L Dermed har vi skaffet er irrationelt tal mellem 0 og L. side 4
7 Vi er nu klar til at bevise vores hovedsætning: Sætning 8 Hvis a og b er to reelle tal hvor a < b, så indeholder det åbne interval ]a; b[ både et irrationelt tal og et rationelt tal. Bevis. Antag at a < b. Lad L = b a, hvilket er større end nul, fordi 2 a < b. Ifølge lemma 7 kan vi finde et rationelt tal, q, og et irrationelt tal, r, som begge er større end nul og mindre end L. Betragt nu tallene:... 2 q, q, 0, q, 2 q, 3 q, 4 q.... De er allesammen rationelle ifølge lemma 4, og de ligger på den reelle akse med en afstand på q. Eftersom q < L, og L er halvdelen af intervalbredden af ]a; b[, må mindst et dem ligge inde i intervallet (se figur 1). Dette viser første halvdel af sætningen. Lad os nu sige at Q var det rationelle tal som vi lige fandt inde i intervallet. Eftersom r < L og L er halvdelen af intervalbredden, må enten Q+r eller Q r ligge inde i intervallet. Ifølge lemma 5 er begge disse tal irrationelle, og dermed har vi også fundet et irrationelt tal inde i intervallet. Figur 1: side 5
8 3 Bemærkninger Bemærk at vi hermed har bevist at alle åbne intervaller, ]a; b[, indeholder både rationelle og irrationelle tal. Men dermed vil alle halvåbne, f.eks. [a; b[ og lukkede intervaller, [a; b] selvfølgelig også indeholde rationelle og irrationelle, hvis blot a < b. Disse intervaller er jo bare en anelse større end det tilsvarende åbne interval. Bemærk at vi egentlig kun har vist at hvert interval indeholder et rationelt og et irrationelt tal. Men det er meget nemt derfra at indse at der faktisk må være uendeligt mange af begge dele i hvert interval: Man kan jo bare inddele et givet interval i lige så mange mindre dele man har lyst til, og hver af disse dele vil så indeholde et rationelt og et irrationelt tal. side 6
π er irrationel Frank Nasser 10. december 2011
π er irrationel Frank Nasser 10. december 2011 2008-2011. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her. Indhold 1 Introduktion
Pythagoras Sætning. Frank Nasser. 20. april 2011
Pythagoras Sætning Frank Nasser 20. april 2011 2008-2011. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her. Bemærk: Dette er
Differentiation af Potensfunktioner
Differentiation af Potensfunktioner Frank Nasser 12. april 2011 c 2008-2011. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her.
Polynomiumsbrøker og asymptoter
Polynomiumsbrøker og asymptoter Frank Villa 9. marts 2012 c 2008-2011. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her. Indhold
Problemløsning i retvinklede trekanter
Problemløsning i retvinklede trekanter Frank Villa 14. februar 2012 c 2008-2011. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug
Værktøjskasse til analytisk Geometri
Værktøjskasse til analytisk Geometri Frank Nasser 0. april 0 c 008-0. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her. Bemærk:
Omskrivningsregler. Frank Nasser. 10. december 2011
Omskrivningsregler Frank Nasser 10. december 2011 2008-2011. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her. Indhold 1 Introduktion
Ordbog over Symboler
Ordbog over Symboler Frank Nasser 20. april 2011 c 2008-2011. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her. Bemærk: Dette
Differentiation af Trigonometriske Funktioner
Differentiation af Trigonometriske Funktioner Frank Villa 15. oktober 01 Dette dokument er en del af MatBog.dk 008-01. IT Teaching Tools. ISBN-13: 978-87-9775-00-9. Se yderligere betingelser for brug her.
Vinkelrette linjer. Frank Villa. 4. november 2014
Vinkelrette linjer Frank Villa 4. november 2014 Dette dokument er en del af MatBog.dk 2008-2012. IT Teaching Tools. ISBN-13: 978-87-92775-00-9. Se yderligere betingelser for brug her. Indhold 1 Introduktion
Grafmanipulation. Frank Nasser. 14. april 2011
Grafmanipulation Frank Nasser 14. april 2011 c 2008-2011. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her. Bemærk: Dette er
Pointen med Differentiation
Pointen med Differentiation Frank Nasser 20. april 2011 c 2008-2011. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her. Bemærk:
User s guide til cosinus og sinusrelationen
User s guide til cosinus og sinusrelationen Frank Nasser 20. april 2011 c 2008-2011. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for
Egenskaber ved Krydsproduktet
Egenskaber ved Krydsproduktet Frank Nasser 23. december 2011 2008-2011. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her. Indhold
Brug og Misbrug af logiske tegn
Brug og Misbrug af logiske tegn Frank Nasser 20. april 2011 c 2008-2011. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her. Bemærk:
Sætninger og Beviser
Sætninger og Beviser Frank Villa 12. marts 2012 c 2008-2011. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her. Indhold 1 Introduktion
Polynomier. Frank Villa. 26. marts 2012
Polynomier Frank Villa 26. marts 2012 c 2008-2011. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her. Indhold 1 Introduktion 2
Cosinusrelationen. Frank Nasser. 11. juli 2011
Cosinusrelationen Frank Nasser 11. juli 2011 2008-2011. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her. Indhold 1 Introduktion
Trekanter. Frank Villa. 8. november 2012
Trekanter Frank Villa 8. november 2012 Dette dokument er en del af MatBog.dk 2008-2012. IT Teaching Tools. ISBN-13: 978-87-92775-00-9. Se yderligere betingelser for brug her. Indhold 1 Introduktion 1 1.1
Afstandsformlerne i Rummet
Afstandsformlerne i Rummet Frank Nasser 12. april 2011 c 2008-2011. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her. Bemærk:
Afstandsformlen og Cirklens Ligning
Afstandsformlen og Cirklens Ligning Frank Villa 19. august 2012 2008-2012. IT Teaching Tools. ISBN-13: 978-87-92775-00-9. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk.
Tal. Vi mener, vi kender og kan bruge følgende talmængder: N : de positive hele tal, Z : de hele tal, Q: de rationale tal.
1 Tal Tal kan forekomme os nærmest at være selvfølgelige, umiddelbare og naturgivne. Men det er kun, fordi vi har vænnet os til dem. Som det vil fremgå af vores timer, har de mange overraskende egenskaber
brikkerne til regning & matematik tal og algebra preben bernitt
brikkerne til regning & matematik tal og algebra 2+ preben bernitt brikkerne. Tal og algebra 2+ 1. udgave som E-bog ISBN: 978-87-92488-35-0 2008 by bernitt-matematik.dk Kopiering af denne bog er kun tilladt
Diskriminantformlen. Frank Nasser. 11. juli 2011
Diskriminantformlen Frank Nasser 11. juli 2011 2008-2011. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her. Indhold 1 Introduktion
Afstande, skæringer og vinkler i rummet
Afstande, skæringer og vinkler i rummet Frank Nasser 9. april 20 c 2008-20. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her.
Pointen med Funktioner
Pointen med Funktioner Frank Nasser 0. april 0 c 0080. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her. Bemærk: Dette er en
Funktionsterminologi
Funktionsterminologi Frank Nasser 12. april 2011 c 2008-2011. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her. Bemærk: Dette
Implikationer og Negationer
Implikationer og Negationer Frank Villa 5. april 2014 Dette dokument er en del af MatBog.dk 2008-2012. IT Teaching Tools. ISBN-13: 978-87-92775-00-9. Se yderligere betingelser for brug her. Indhold 1 Introduktion
Ting man gør med Vektorfunktioner
Ting man gør med Vektorfunktioner Frank Nasser. april 11 c 8-11. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her. Bemærk: Dette
Her er et spørgsmål, du måske aldrig har overvejet: kan man finde to trekanter med samme areal?
Her er et spørgsmål, du måske aldrig har overvejet: kan man finde to trekanter med samme areal? Det er ret let at svare på: arealet af en trekant, husker vi fra vor kære folkeskole, findes ved at gange
Analytisk Geometri. Frank Nasser. 12. april 2011
Analytisk Geometri Frank Nasser 12. april 2011 c 2008-2011. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her. Bemærk: Dette er
Værktøjskasse til analytisk Geometri
Værktøjskasse til analytisk Geometri Frank Villa. september 04 Dette dokument er en del af MatBog.dk 008-0. IT Teaching Tools. ISBN-3: 978-87-9775-00-9. Se yderligere betingelser for brug her. Indhold
Andengradsligninger. Frank Nasser. 12. april 2011
Andengradsligninger Frank Nasser 12. april 2011 c 2008-2011. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her. Bemærk: Dette
Logaritmiske Transformationer
Logaritmiske Transformationer Frank Nasser 23. april 2011 c 2008-2011. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her. Bemærk:
Grænseværdier og Kontinuitet
Grænseværdier og Kontinuitet Frank Villa 11. august 2011 2008-2011. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her. Indhold
Delmængder af Rummet
Delmængder af Rummet Frank Villa 15. maj 2012 c 2008-2011. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her. Indhold 1 Introduktion
Egenskaber ved Krydsproduktet
Egenskaber ved Krydsproduktet Frank Nasser 12. april 2011 c 2008-2011. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her. Bemærk:
Løsning af simple Ligninger
Løsning af simple Ligninger Frank Nasser 19. april 2011 c 2008-2011. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her. Bemærk:
De rigtige reelle tal
De rigtige reelle tal Frank Villa 17. januar 2014 Dette dokument er en del af MatBog.dk 2008-2012. IT Teaching Tools. ISBN-13: 978-87-92775-00-9. Se yderligere betingelser for brug her. Indhold 1 Introduktion
Afstande, skæringer og vinkler i rummet
Afstande, skæringer og vinkler i rummet Frank Villa 2. maj 202 c 2008-20. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her. Indhold
Additionsformlerne. Frank Villa. 19. august 2012
Additionsformlerne Frank Villa 19. august 2012 2008-2011. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her. Indhold 1 Introduktion
Projekt 1.4 De reelle tal og 2. hovedsætning om kontinuitet
Projekt 1.4 De reelle tal og 2. hovedsætning om kontinuitet Mens den 1. hovedsætning om kontinuerte funktioner kom forholdsvis smertefrit ud af intervalrusebetragtninger, så er 2. hovedsætning betydeligt
Potensfunktioner, Eksponentialfunktioner og Logaritmer
Potensfunktioner, Eksponentialfunktioner og Logaritmer Frank Villa 23. februar 2014 Dette dokument er en del af MatBog.dk 2008-2012. IT Teaching Tools. ISBN-13: 978-87-92775-00-9. Se yderligere betingelser
Flere ligninger med flere ukendte
Flere ligninger med flere ukendte Frank Villa 14. februar 2012 c 2008-2011. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her.
Grænseværdier og Kontinuitet
Grænseværdier og Kontinuitet Frank Nasser 12. april 2011 c 2008-2011. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her. Bemærk:
Primtal - hvor mange, hvordan og hvorfor?
Johan P. Hansen 1 1 Institut for Matematiske Fag, Aarhus Universitet Gult foredrag, EULERs Venner, oktober 2009 Disposition 1 EUKLIDs sætning. Der er uendelig mange primtal! EUKLIDs bevis Bevis baseret
Analytisk plangeometri 1
1 Analytisk plangeometri 1 Kære 1. x, Vi begynder dag vores forløb om analytisk plangeometri. Dette bliver en udvidelse af ting i allerede kender til, så noget ved I i forvejen, mens andet bliver helt
Fraktaler Mandelbrots Mængde
Fraktaler Mandelbrots Mængde Foredragsnoter Af Jonas Lindstrøm Jensen Institut For Matematiske Fag Århus Universitet Indhold Indhold 1 1 Indledning 3 2 Komplekse tal 5 2.1 Definition.......................................
Andengradsligninger. Frank Nasser. 11. juli 2011
Andengradsligninger Frank Nasser 11. juli 2011 2008-2011. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her. Indhold 1 Introduktion
UENDELIG, MERE UENDELIG, ENDNU MERE UENDELIG, Indledning
UENDELIG, MERE UENDELIG, ENDNU MERE UENDELIG, ESBEN BISTRUP HALVORSEN 1 Indledning De fleste kan nok blive enige om, at mængden {a, b, c} er større end mængden {d} Den ene indeholder jo tre elementer,
Noter til Perspektiver i Matematikken
Noter til Perspektiver i Matematikken Henrik Stetkær 25. august 2003 1 Indledning I dette kursus (Perspektiver i Matematikken) skal vi studere de hele tal og deres egenskaber. Vi lader Z betegne mængden
TREKANTER. Indledning. Typer af trekanter. Side 1 af 7. (Der har været tre kursister om at skrive denne projektrapport)
Side 1 af 7 (Der har været tre kursister om at skrive denne projektrapport) TREKANTER Indledning Vi har valgt at bruge denne projektrapport til at udarbejde en oversigt over det mest grundlæggende materiale
Tal og Regneoperationer
Tal og Regneoperationer Frank Nasser 20. april 2011 c 2008-2011. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her. Bemærk: Dette
Potensfunktioner, Eksponentialfunktioner og Logaritmer
Potensfunktioner, Eksponentialfunktioner og Logaritmer Frank Villa 25. februar 2014 Dette dokument er en del af MatBog.dk 2008-2012. IT Teaching Tools. ISBN-13: 978-87-92775-00-9. Se yderligere betingelser
Noter om primtal. Erik Olsen
Noter om primtal Erik Olsen 1 Notation og indledende bemærkninger Vi lader betegne de hele tal, og Z = {... 3, 2, 1, 0, 1, 2, 3...} N = {0, 1, 2, 3...} Z være de positive hele tal. Vi minder her om et
Polynomier. Indhold. Georg Mohr-Konkurrencen. 1 Polynomier 2. 2 Polynomiumsdivision 4. 3 Algebraens fundamentalsætning og rødder 6
Indhold 1 Polynomier 2 Polynomier 2 Polynomiumsdivision 4 3 Algebraens fundamentalsætning og rødder 6 4 Koefficienter 8 5 Polynomier med heltallige koefficienter 9 6 Mere om polynomier med heltallige koefficienter
Matematisk modellering og numeriske metoder. Lektion 8
Matematisk modellering og numeriske metoder Lektion 8 Morten Grud Rasmussen 18. oktober 216 1 Fourierrækker 1.1 Periodiske funktioner Definition 1.1 (Periodiske funktioner). En periodisk funktion f er
Matematisk modellering og numeriske metoder. Lektion 16
Matematisk modellering og numeriske metoder Lektion 16 Morten Grud Rasmussen 6. november, 2013 1 Interpolation [Bogens afsnit 19.3 side 805] 1.1 Interpolationspolynomier Enhver kontinuert funktion f på
Ting man gør med Vektorfunktioner
Ting man gør med Vektorfunktioner Frank Villa 3. august 13 Dette dokument er en del af MatBog.dk 8-1. IT Teaching Tools. ISBN-13: 978-87-9775--9. Se yderligere betingelser for brug her. Indhold 1 Introduktion
Grænseværdier og Kontinuitet
Grænseværdier og Kontinuitet Frank Villa 17. marts 2015 Dette dokument er en del af MatBog.dk 2008-2012. IT Teaching Tools. ISBN-13: 978-87-92775-00-9. Se yderligere betingelser for brug her. Indhold 1
Mujtaba og Farid Integralregning 06-08-2011
Indholdsfortegnelse Integral regning:... 2 Ubestemt integral:... 2 Integrationsprøven:... 3 1) Integration af potensfunktioner:... 3 2) Integration af sum og Differens:... 3 3) Integration ved Multiplikation
dvs. vinkelsummen i enhver trekant er 180E. Figur 11
Sætning 5.8: Vinkelsummen i en trekant er 180E. Bevis: Lad ÎABC være givet. Gennem punktet C konstrueres en linje, som er parallel med linjen gennem A og B. Dette lader sig gøre på grund af sætning 5.7.
Algebra - Teori og problemløsning
Algebra - Teori og problemløsning, januar 05, Kirsten Rosenkilde. Algebra - Teori og problemløsning Kapitel -3 giver en grundlæggende introduktion til at omskrive udtryk, faktorisere og løse ligningssystemer.
Retningslinjer for bedømmelsen. Georg Mohr-Konkurrencen 2010 2. runde
Retningslinjer for bedømmelsen. Georg Mohr-Konkurrencen 2010 2. runde Det som skal vurderes i bedømmelsen af en besvarelse, er om deltageren har formået at analysere problemstillingen, kombinere de givne
brikkerne til regning & matematik tal og algebra F+E+D preben bernitt
brikkerne til regning & matematik tal og algebra F+E+D preben bernitt 1 brikkerne. Tal og algebra E+D 2. udgave som E-bog ISBN: 978-87-92488-35-0 2010 by bernitt-matematik.dk Kopiering af denne bog er
Komplekse Tal. Frank Villa. 15. februar 2013
Komplekse Tal Frank Villa 15. februar 2013 Dette dokument er en del af MatBog.dk 2008-2012. IT Teaching Tools. ISBN-13: 978-87-92775-00-9. Se yderligere betingelser for brug her. Indhold 1 Introduktion
Matematisk induktion
Induktionsbeviser MT01.0.07 1 1 Induktionsbeviser Matematisk induktion Sætninger der udtaler sig om hvad der gælder for alle naturlige tal n N, kan undertiden bevises ved matematisk induktion. Idéen bag
Matematiske metoder - Opgaver
Matematiske metoder - Opgaver Anders Friis, Anne Ryelund 25. oktober 2014 Logik Opgave 1 Find selv på tre udtalelser (gerne sproglige). To af dem skal være udsagn, mens det tredje ikke må være et udsagn.
En differentiabel funktion hvis afledte ikke er kontinuert Søren Knudby
24 En differentiabel funktion hvis afledte ikke er kontinuert Søren Knudby Det er velkendt for de fleste, at differentiabilitet af en reel funktion f medfører kontinuitet af f, mens det modsatte ikke gælder
Euklids algoritme og kædebrøker
Euklids algoritme og kædebrøker Michael Knudsen I denne note vil vi med Z, Q og R betegne mængden af henholdsvis de hele, de rationale og de reelle tal. Altså er { m } Z = {..., 2,, 0,, 2,...} og Q = n
Vektorer og lineær regression
Vektorer og lineær regression Peter Harremoës Niels Brock April 03 Planproduktet Vi har set, at man kan gange en vektor med et tal Et oplagt spørgsmål er, om man også kan gange to vektorer med hinanden
Vektorer og lineær regression. Peter Harremoës Niels Brock
Vektorer og lineær regression Peter Harremoës Niels Brock April 2013 1 Planproduktet Vi har set, at man kan gange en vektor med et tal. Et oplagt spørgsmål er, om man også kan gange to vektorer med hinanden.
t a l e n t c a m p d k Talteori Anne Ryelund Anders Friis 16. juli 2014 Slide 1/36
Slide 1/36 sfaktorisering Indhold 1 2 sfaktorisering 3 4 5 Slide 2/36 sfaktorisering Indhold 1 2 sfaktorisering 3 4 5 Slide 3/36 1) Hvad er Taleteori? sfaktorisering Slide 4/36 sfaktorisering 1) Hvad er
Undersøgelser af trekanter
En rød tråd igennem kapitlet er en søgen efter svar på spørgsmålet: Hvordan kan vi beregne os frem til længder, vi ikke kan komme til at måle?. Hvordan kan vi fx beregne højden på et træ eller et hus,
Funktioner generelt. for matematik pä B-niveau i stx. 2013 Karsten Juul
Funktioner generelt for matematik pä B-niveau i st f f ( ),8 0 Karsten Juul Funktioner generelt for matematik pä B-niveau i st Funktion, forskrift, definitionsmångde Find forskrift StÇrste og mindste vårdi
Enhedscirklen og de trigonometriske Funktioner
Enhedscirklen og de trigonometriske Funktioner Frank Nasser 12. april 2011 c 2008-2011. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for
Eksempel på den aksiomatisk deduktive metode
Eksempel på den aksiomatisk deduktive metode Et rigtig godt eksempel på et aksiomatisk deduktivt system er Euklids Elementer. Euklid var græker og skrev Elemeterne omkring 300 f.kr. Værket består af 13
Differentiation. Frank Nasser. 11. juli 2011
Differentiation Frank Nasser 11. juli 2011 2008-2011. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her. Indhold 1 Introduktion
Polynomium Et polynomium. Nulpolynomiet Nulpolynomiet er funktionen der er konstant nul, dvs. P(x) = 0, og dets grad sættes per definition til.
Polynomier Polynomier Polynomium Et polynomium P(x) = a n x n + a n x n +... + a x + a 0 Disse noter giver en introduktion til polynomier, centrale sætninger om polynomiumsdivision, rødder og koefficienter
Taylor s approksimationsformler for funktioner af én variabel
enote 17 1 enote 17 Taylor s approksimationsformler for funktioner af én variabel I enote 14 og enote 16 er det vist hvordan funktioner af én og to variable kan approksimeres med førstegradspolynomier
Matematik YY Foråret Kapitel 1. Grupper og restklasseringe.
Matematik YY Foråret 2004 Elementær talteori Søren Jøndrup og Jørn Olsson Kapitel 1. Grupper og restklasseringe. Vi vil i første omgang betragte forskellige typer ligninger og søge efter heltalsløsninger
